Abstract:
การวิจัยครั้งนี้ มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีหาค่าพยากรณ์ร่วมของตัวแบบการถดถอยเชิงเส้นพหุคูณ 3 วิธี ได้แก่ วิธีค่าสัมบูรณ์ต่ำสุด (LAE) วิธีบูตสแตรป (BO) และวิธี adaptive regression by mixing (ARM) โดยตัวแบบที่นำมาหาค่าพยากรณ์ร่วมได้แก่ ตัวแบบที่ได้จากวิธีพิจารณาการถดถอยทุกรูปแบบ วิธีคัดเลือกตัวแปรแบบไปข้างหน้า วิธีกำจัดตัวแปรแบบถอยหลัง และวิธีการถดถอยขั้นบันได ซึ่งเกณฑ์ที่ใช้ในการตัดสินใจ คือ เกณฑ์ร้อยละของความคลาดเคลื่อนเฉลี่ยสัมบูรณ์ (MAPE) จำนวนตัวแปรอิสระที่ศึกษาคือ 3, 5 และ 7 ตัว เมื่อจำนวนตัวแปรอิสระเท่ากับ 3 กำหนดระดับความสัมพันธ์ระหว่างตัวแปรอิสระ x[subscript 1] กับ x[subscript 2] เท่ากับ 0.3, 0.5 และ 0.8 โดยศึกษาเมื่อขนาดตัวอย่างเท่ากับ 14, 20, 30, 40 และ 50 เมื่อจำนวนตัวแปรอิสระเท่ากับ 5 กำหนดระดับความสัมพันธ์ระหว่าง x[subscript 1] กับ x[subscript 2] และ x[subscript 4] กับ x[subscript 5] เท่ากับ (0.3, 0.3), (0.4, 0.6) และ (0.7, 0.9) โดยศึกษาเมื่อขนาดตัวอย่างเท่ากับ 20, 30, 40 และ 50 เมื่อจำนวนตัวแปรอิสระเท่ากับ 7 กำหนดระดับความสัมพันธ์ระหว่าง x[subscript 1] กับ x[subscript 2], x[subscript 4] กับ x[subscript 5] และ x[subscript 6] กับ x[subscript 7] เท่ากับ (0.3, 0.3, 0.3), (0.4, 0.5, 0.6) และ (0.7, 0.8, 0.9) โดยศึกษาเมื่อขนาดตัวอย่างเท่ากับ 30, 40 และ 50 ความคลาดเคลื่อนมีการแจกแจงปกติที่มีค่าเฉลี่ยเท่ากับ 0 และส่วนเบี่ยงเบนมาตรฐานเท่ากับ 5 วิธีการวิจัยใช้การจำลองด้วยเทคนิคมอนติคาร์โลซึ่งกระทำซ้ำ 1,000 รอบในแต่ละสถานการณ์ ผลการวิจัยปรากฏว่าปัจจัยที่มีผลต่อค่าเฉลี่ยของ MAPE ของทุกวิธี คือ ระดับความสัมพันธ์ระหว่างตัวแปรอิสระและขนาดตัวอย่าง โดยค่าเฉลี่ยของ MAPE จะมีแนวโน้มเพิ่มขึ้นเมื่อระดับความสัมพันธ์สูงขึ้น และมีแนวโน้มลดลงเมื่อขนาดตัวอย่างเพิ่มขึ้น จากการเปรียบเทียบค่าเฉลี่ยของ MAPE ของการหาค่าพยากรณ์ร่วม 3 วิธี พบว่า วิธี BO มีประสิทธิภาพมากที่สุดในทุกกรณีที่ศึกษา และโดยทั่วไปวิธีพยากรณ์เดี่ยวที่ได้รับน้ำหนักมากที่สุดจะขึ้นอยู่กับระดับพหุสัมพันธ์ระหว่างตัวแปรอิสระ ดังนี้ กรณีที่พหุสัมพันธ์ระหว่างตัวแปรอิสระอยู่ในระดับต่ำ วิธีพิจารณาการถดถอยทุกรูปแบบจะได้รับน้ำหนักมากที่สุด กรณีที่พหุสัมพันธ์ระหว่างตัวแปรอิสระอยู่ในระดับปานกลาง วิธีกำจัดตัวแปรแบบถอยหลังจะได้รับน้ำหนักมากที่สุด กรณีที่พหุสัมพันธ์ระหว่างตัวแปรอิสระอยู่ในระดับสูง วิธีการถดถอยขั้นบันไดจะได้รับน้ำหนักมากที่สุด