Abstract:
งานวิจัยครั้งนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการประมาณค่าพารามิเตอร์ของ ตัวแบบอนุกรมเวลาที่มีฤดูกาล ด้วยวิธีการประมาณ 3 วิธี คือ วิธีกำลังสองน้อยที่สุดแบบไม่มีเงื่อนไข (ULS) วิธีกำลังสองน้อยที่สุดแบบมีเงื่อนไข (CLS) และวิธีการประมาณความควรจะเป็นสูงสุด (MLE) โดยใช้ตัวแบบอนุกรมเวลา 4 ตัวแบบ คือ ARIMA(0,0,0)(1,0,0)4 ARIMA(0,0,0)(0,0,1)4 ARIMA(0,0,0)(1,0,1)4 และ ARIMA(0,0,0)(2,0,1)4 ซึ่งใช้ขนาดตัวอย่าง 4 ระดับ คือ 60 80 100 และ 120 ไตรมาส การจำลองข้อมูลและการวิเคราะห์ผลทำการศึกษาด้วยโปรแกรม R ซึ่งทำการทดลองซ้ำๆกัน 500 ครั้ง โดยใช้เกณฑ์การเปรียบเทียบด้วยค่าความคลาดเคลื่อนกำลังสองเฉลี่ย (MSE) หรือค่าเฉลี่ยของค่าความคลาดเคลื่อนกำลังสองเฉลี่ย ผลการวิจัยสรุปได้ดังนี้ ระดับขนาดตัวอย่างส่งผลต่อประสิทธิภาพในการประมาณค่าพารามิเตอร์ในทุกตัวแบบที่ทำการศึกษาทั้ง 4 ตัวแบบ ซึ่ง 1.สำหรับตัวแบบ ARIMA(0,0,0)(1,0,0)4 เมื่อระดับของค่าพารามิเตอร์และขนาดตัวอย่างมีค่าน้อย วิธี ULS เป็นวิธีที่ดีที่สุดเพราะให้ค่า MSE ต่ำที่สุด แต่เมื่อค่าพารามิเตอร์และขนาดตัวอย่างมีค่าเพิ่มขึ้น วิธี MLE เป็นวิธีที่ดีกว่าอีก 2 วิธี โดยเมื่อค่าพารามิเตอร์มีค่าเพิ่มขึ้น วิธี MLE เป็นวิธีที่ดีแม้ว่าขนาดตัวอย่างจะมีค่าน้อย 2.สำหรับตัวแบบ ARIMA(0,0,0)(0,0,1)4 และ ARIMA(0,0,0)(1,0,1)4 เมื่อระดับของค่าพารามิเตอร์และขนาดตัวอย่างมีค่าน้อย วิธี ULS เป็นวิธีที่ดีที่สุดเพราะให้ค่า MSE ต่ำที่สุด แต่เมื่อค่าพารามิเตอร์และขนาดตัวอย่างมีค่าเพิ่มขึ้น วิธี CLS และวิธี MLE เป็นวิธีที่ดีกว่าวิธี ULS โดยกรณีที่พารามิเตอร์มีค่ามาก วิธี MLE จะให้ค่า MSE ต่ำสุดสำหรับตัวแบบ ARIMA(0,0,0)(0,0,1)4 3.สำหรับตัวแบบ ARIMA(0,0,0)(2,0,1)4 ในทุกระดับของค่าพารามิเตอร์และทุกขนาดตัวอย่างที่ศึกษา วิธี ULS เป็นวิธีการประมาณค่าพารามิเตอร์ที่มีประสิทธิภาพที่ดีที่สุดเพราะให้ค่าต่ำที่สุด