Abstract:
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบวิธีการประมาณค่าสูญหายของตัวแปรตามในการวิเคราะห์การถดถอยเชิงเส้นพหุเพื่อการพยากรณ์โดยพิจารณาข้อมูล 2 ลักษณะ คือ ข้อมูลภาคตัดขวาง และข้อมูลอนุกรมเวลาที่มีปัจจัยด้านแนวโน้ม และปัจจัยฤดูกาลเข้ามาเกี่ยวข้องโดยทำการประมาณค่าสูญหายด้วยวิธี Regression Imputation (RI) วิธี Nearest Neighbor Imputation (NNI) วิธี Weighted Nearest Neighbor and Regression Imputation (WNR) และวิธี EM algorithm (EM) เกณฑ์ในการเปรียบเทียบประสิทธิภาพในการประมาณค่าสูญหายจะใช้ค่า MAPE
ผลการวิจัยสรุปได้ดังนี้ สำหรับข้อมูลภาคตัดขวาง กรณีที่ค่าสหสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระทั้ง 2 ตัวสูง เมื่อส่วนเบี่ยงเบนมาตรฐานอยู่ในระดับต่ำถึงปานกลางวิธี RI และ EM มีค่า MAPE ต่ำกว่าวิธีอื่น เมื่อส่วนเบี่ยงเบนมาตรฐานอยู่ในระดับสูงวิธี WNR ให้ผลดีกว่าวิธีอื่นๆ ที่นำมาเปรียบเทียบ กรณีที่ค่าสหสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระตัวหนึ่งสูงมากและอีกตัวหนึ่งปานกลาง วิธี RI และ EM จะให้ผลดีกว่าวิธีอื่นๆ สำหรับข้อมูลอนุกรมเวลา วิธี WNR มีค่า MAPE ต่ำกว่าวิธีการประมาณค่าอื่นๆในกรณีที่ข้อมูลที่มีอิทธิพลของฤดูกาลสูง และวิธี NNI จะให้ผลดีเมื่อส่วนเบี่ยงเบนมาตรฐานอยู่ในระดับสูง สำหรับข้อมูลที่มีอิทธิพลจากปัจจัยแนวโน้มสูงวิธี RI และ EM เป็นวิธีที่ให้ผลดีกว่าวิธีอื่นๆที่นำมาเปรียบเทียบ กรณีที่ข้อมูลมีอิทธิพลจากปัจจัยแนวโน้มและปัจจัยฤดูกาลระดับปานกลาง เมื่อส่วนเบี่ยงเบนมาตรฐานอยู่ในระดับต่ำ วิธี RI และ EM มีค่า MAPE ต่ำกว่าวิธีการประมาณค่าอื่นๆ เมื่อส่วนเบี่ยงเบนมาตรฐานเพิ่มสูงขึ้น วิธี WNR เป็นวิธีที่มีค่า MAPE ต่ำกว่าวิธีการประมาณค่าอื่นๆที่นำมาเปรียบเทียบ