DSpace Repository

ระบบสัญญาณเตือนภัยล่วงหน้าทางการเงิน : การเปรียบเทียบระหว่างวิธีการถดถอยโลจิสติกส์ และโครงข่ายประสาทเทียม

Show simple item record

dc.contributor.advisor ฐิติวดี ชัยวัฒน์
dc.contributor.author กัมพล กมลรัตน์ธาดา
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2013-06-20T06:03:58Z
dc.date.available 2013-06-20T06:03:58Z
dc.date.issued 2553
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/32359
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2553 en_US
dc.description.abstract วิกฤตการณ์ทางเศรษฐกิจของประเทศสหรัฐอเมริกาในปี พ.ศ. 2551 ก่อให้เกิดความไม่มั่นคงต่อทุกภาคธุรกิจ ซึ่งธุรกิจธนาคารเป็นหนึ่งในธุรกิจที่ได้รับผลกระทบอย่างมากตามสภาวะถดถอยทางเศรษฐกิจในครั้งนี้ ดังนั้น งานวิจัยนี้ จึงมีวัตถุประสงค์เพื่อศึกษาถึงอัตราส่วนทางการเงินต่าง ๆ ที่ส่งผลต่อกับปัญหาความไม่มั่นคงของธุรกิจธฯาคาร เพื่อให้ภาครัฐและเอกชนสามารถใช้อัตราส่วนทางการเงินดังกล่าวเพื่อเป็นเครื่องมือในการตรวจสอบความเข้มแข็งทางการเงินและการดำเนินงานของธุรกิจธนาคาร งานวิจัยนี้ศึกษาถึงปัจจัยที่มีความสำคัญในการชี้วัดและเป็นสัญญาณเตือนภัยล่วงหน้าถึงความไม่มั่นคงทางการเงินของธนาคาร และได้ทำการเปรียบเทียบความแม่นยำและความถูกต้องของตัวแบบสัญญาณเตือนภัยล่วงหน้าในการทำนายความไม่มั่นคงทางการเงินของธนาคาร โดยใช้วิธีการถดถอยโลจิสติกส์และโครงข่ายประสาทเทียม โดยทดสอบอัตราส่วนทางการเงิน 21 อัตราส่วน เพื่อการจำแนกกลุ่มความไม่มั่นคงของธนาคาร โดยผลลัพธ์ชี้ให้เห็นว่าระบบสัญญาณเตือนภัยล่วงหน้าทางการเงินที่ได้จากวิธีการทั้งสองดังข้างต้นมีความสามารถสูงในการจำแนกกลุ่ม โดยสามารถจำแนกกลุ่มของธนาคารที่มีความมั่นคงและกลุ่มของธนาคารที่มีความไม่มั่นคงได้เป็นอย่างดี และผลจากการเปรียบเทียบระหว่างวิธีการถดถอยโลจิสติกส์และโครงข่ายประสาทเทียมพบว่า วิธีการโครงข่ายประสาทเทียมสามารถทำนายข้อมูลและจำแนกกลุ่มได้แม่นยำกว่าวิธีการถดถอยโลจิสติกส์ ดังนั้น งานการวิจัยนี้จึงสามารถนำไปประยุกต์ใช้เพื่อเป็นแนวทางหนึ่งในการที่จะเป็นตัวแบบ เพื่อเป็นระบบสัญญาณเตือนภัยล่วงหน้าทางการเงินในการบ่งชี้ถึงสถานะความไม่มั่นคงของธุรกิจธนาคารต่อไปได้ en_US
dc.description.abstractalternative U.S. Economic Crisis in 2008 has been marked by a failure in most business sectors. One of the industries substantially affected from this economic downturn is a banking business. From this fact, the purpose of this research wants to investigate the financial ratio factors that are able to forecast the insolvency of a banking business. The result could be useful to the government and private sectors for an auditing financial viability and performance of a banking business. Therefore, the importance of this research is the study of the important factors that indicate and urge in advance for the sign of financial failure. This research uses 21 financial ratios to set up a financial early warning system by using logistic regression approach and neural networks to classify the group of financial viability bank versus the group of financial insolvency bank. This research also compares the accuracy and validity of a financial early warning model. The result shows that the financial early warning model using neural networks to forecast bank insolvency is more accurate and valid than a predicting model using logistic regression approach. In conclusion, this research is useful and should be applicable to use as a financial early warning model to further indicate the insolvency of a banking industry. en_US
dc.language.iso th en_US
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.relation.uri http://doi.org/10.14457/CU.the.2010.664
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.subject วิกฤตการณ์การเงิน -- พยากรณ์ en_US
dc.subject ธนาคารและการธนาคาร en_US
dc.subject วัฏจักรธุรกิจ en_US
dc.subject พยากรณ์ธุรกิจ en_US
dc.subject Financial crises -- Forecasting en_US
dc.subject Banks and banking en_US
dc.subject Business cycles en_US
dc.subject Business forecasting en_US
dc.title ระบบสัญญาณเตือนภัยล่วงหน้าทางการเงิน : การเปรียบเทียบระหว่างวิธีการถดถอยโลจิสติกส์ และโครงข่ายประสาทเทียม en_US
dc.title.alternative A financial early warning system : a comparison between logistic regression approach and neural networks en_US
dc.type Thesis en_US
dc.degree.name วิทยาศาสตรมหาบัณฑิต en_US
dc.degree.level ปริญญาโท en_US
dc.degree.discipline การประกันภัย en_US
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.email.advisor Thitivadee@acc.chula.ac.th
dc.identifier.DOI 10.14457/CU.the.2010.664


Files in this item

This item appears in the following Collection(s)

Show simple item record