Abstract:
การคาดการณ์เป็นสิ่งสำคัญในการตัดสินใจสำหรับการประยุกต์ใช้ในด้านต่างๆ เช่นทางธุรกิจ ทางการแพทย์ หรือทางประกันภัย เมื่อต้องเผชิญกับข้อมูลที่ไม่สมบูรณ์การคาดเดาอาจจะทำได้ยาก ข้อมูลตัดปลายด้วยเวลา(Time-censored data) เป็นข้อมูลไม่สมบูรณ์ที่พบได้ทั่วไป โดยเป็นข้อมูลที่จะตัดปลายทางขวาด้วยเวลาคงที่ที่ถูกกำหนดไว้ล่วงหน้า ในการศึกษานี้ผู้วิจัยต้องการศึกษาเปรียบเทียบการประมาณค่าควอนไทล์ของการแจกแจงปกติ (Normal Distribution; NOR) การแจกแจงโลจิสติค (Logistic Distribution; LOG) การแจกแจงค่าต่ำสุดขีด (Smallest Extreme Value Distribution; SEV) และการแจกแจงค่าสูงสุดขีด (Largest Extreme Value Distribution; LEV) ด้วยวิธีภาวะน่าจะเป็นสูงสุด (Maximum Likelihood Estimation Method; MLE Method) วิธีการประมาณแบบกราฟ (Graphical Estimation Method; GE Method) และวิธีการประมาณแบบกราฟด้วยข้อมูลบางส่วน(Graphical Estimation with Partial Data Method; GEPD Method) ซึ่งประกอบไปด้วย วิธี K-Cluster Mean, วิธี Trimmed q% และวิธี Trimmed q% & K-Cluster Meanโดย K = 4, 6, 8 และ q = 5, 10 ตามลำดับ ในสถานการณ์ต่าง ๆ ที่ขนาดตัวอย่าง (Sample Size; n) เท่ากับ 20, 40, 80 และ 120 ด้วยสัดส่วนของข้อมูลที่ถูกตัดปลาย(Censoring Proportion; p) เป็น 0.1, 0.2 และ 0.3 ได้ถูกศึกษาในครั้งนี้ การศึกษาแบบจำลองได้ทำขึ้นจากโปรแกรม R โดยทำซ้ำจำนวน 5,000 รอบในแต่ละสถานการณ์ จากการศึกษาพบว่า i) วิธี GEPD แบบ trimmed 10% จะมีประสิทธิภาพดีที่สุดสำหรับข้อมูลที่มีการแจกแจงค่าต่ำสุดขีด, ค่าสูงสุดขีดและ โลจิสติค ที่ขนาดตัวอย่างขนาดเล็ก (n=20), ii) วิธี GEPD แบบ trimmed 10%& 6-Cluster Mean จะมีประสิทธิภาพดีที่สุดสำหรับข้อมูลที่มีการแจกแจงปกติ ที่ขนาดตัวอย่างขนาดเล็ก (n=20), และ iii) โดยทั่วไปวิธี GE จะมีประสิทธิภาพมากสุดสำหรับข้อมูลในทุกการแจกแจงที่ศึกษาที่ขนาดตัวอย่างที่ใหญ่ขึ้น (n≥ 40) เมื่อพิจารณาประกอบความเรียบง่ายของการประมาณ วิธี GE น่าจะเป็นวิธีการที่น่าใช้งานมากที่สุดเนื่องจากทุกวิธีการแทบมีประสิทธิภาพที่ไม่แตกต่างกัน