DSpace Repository

การหาค่าพารามิเตอร์ริดจ์ที่เหมาะสมเพื่อแก้ปัญหาพหุสัมพันธ์ในการวิเคราะห์ความถดถอยโลจิสติกแบบสองกลุ่ม

Show simple item record

dc.contributor.advisor กัลยา วานิชย์บัญชา
dc.contributor.author สาวิตรี บุญพัชรนนท์
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2013-12-07T03:54:51Z
dc.date.available 2013-12-07T03:54:51Z
dc.date.issued 2554
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/37026
dc.description วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2554 en_US
dc.description.abstract หาค่าพารามิเตอร์ริดจ์ที่เหมาะสมสำหรับแก้ปัญหาพหุสัมพันธ์ ในการวิเคราะห์ความถดถอยโลจิสติกแบบสองกลุ่มซึ่งดำเนินการภายใต้ขอบเขตของจำนวนตัวแปรอิสระที่ศึกษาคือ 2 และ 3 ตัว ระดับความสัมพันธ์ของตัวแปรอิสระซึ่งมีทั้งระดับความสัมพันธ์สูง กลางและต่ำ การแจกแจงของค่าตัวแปรอิสระซึ่งศึกษาภายใต้ 3 การแจกแจงคือ การแจกแจงปัวซองส์ การแจกแจงปกติ และการแจกแจงแกมมา ค่าประสิทธิ์ความถดถอยมีค่า 2, 3 และ 4 และขนาดตัวอย่างเป็น 40 และ 70 สำหรับจำนวนตัวแปรอิสระเท่ากับ 2 ตัว ส่วนจำนวนตัวแปรอิสระเท่ากับ 3 ตัว จะศึกษาที่ขนาดตัวอย่าง 60 และ 100 โดยจำลองข้อมูลและวิเคราะห์ผลด้วยโปรแกรม R 2.9.0 และโปรแกรม SPSS for Windows ver.19 ทั้งนี้การประมาณค่าสัมประสิทธิ์ความถดถอยด้วยวิธีการแบบริดจ์ใช้หลักการของนิวตัน-ราฟสัน ส่วนเกณฑ์ที่ใช้ในตัดสินใจเลือกค่าพารามิเตอร์บริดจ์ที่เหมาะสมมีด้วยกัน 2 เกณฑ์คือ เกณฑ์ Mean absolute percentage error (MAPE) และเกณฑ์ค่าส่วนเบี่ยงเบนมาตรฐาน (SD) การศึกษาภายใต้ขอบเขตดังกล่าวผลปรากฎว่า ในกรณีของจำนวนตัวแปรอิสระเท่ากับ 2 และ 3 ตัว ให้ผลสอดคล้องไปในทิศทางเดียวกัน โดยถ้าเพิ่มระดับความสัมพันธ์ของตัวแปรอิสระหรือเพิ่มขนาดตัวอย่าง จะส่งผลให้ค่าพารามิเตอร์ริดจ์มีค่าสูงขึ้น ซึ่งถ้าพิจารณาเปอร์เซ็นต์การเพิ่มขึ้นของค่าพารามิเตอร์ริดจ์ในแต่ละการแจกแจงของตัวแปรอิสระจะพบว่า การแจกแจงที่ให้เปอร์เซ็นต์การเพิ่มขึ้นเรียงลำดับจากมากไปน้อยดังนี้ การแจกแจงแกมมา การแจกแจงปกติ และการแจกแจงปัวซองส์ ตามลำดับ ส่วนถ้าพิจารณาค่าสัมประสิทธิ์ความถดถอยที่เพิ่มขึ้นพบว่า ค่าพารามิเตอร์ริดจ์มีค่าลดลง โดยเปอร์เซ็นต์การลดลงของค่าพารามิเตอร์ริดจ์เรียงลำดับการแจกแจงของตัวแปรอิสระสำหรับค่าสัมประสิทธิ์ความถดถอยเท่ากับ 2 และ 3 จากมากไปน้อย เป็นดังนี้ การแจกแจงแกมมา การแจกแจงปกติ และการแจกแจงปัวซองส์ ส่วนค่าสัมประสิทธิ์ความถดถอยเท่ากับ 4 สามารถเรียงลำดับได้ดังนี้ การแจกแจงปกติ การแจกแจงแกมมา และการแจกแจงปัวซองส์ ตามลำดับ en_US
dc.description.abstractalternative To find the optimal ridge parameter for solving multicollinearity problem between the independent variables in binary logistic regression. This study scopes on 2 and 3 independent variables, low, medium and high correlations, Poisson Normal and Gamma distribution and which the logistic regression coeffcients, are 2,3, and 4, sample sizes are 40 and 70 for the two independent variables, 60 and 100 for the three independent variables. Simulating and analyzing data in this study use R 2.9.0 and PSS for Windows ver.19. The coefficient of logistic regression uses Newton-Raphson methods. Mean absolute pecentage error (MAPE) and standard deviation (SD) are the criteria for selecting the optimal ridge parameter. Studying under these assumptions can gain many useful results. In case of two and three independent variables, the results are the same. When we increase the correlation or the sample size, the value of ridge parameters are increase. If we consider on the increased percents of ridge parameter, the distributions that have the highest percent increased to the lowest percent are Gamma, Normal and Poisson distribution, respectively. On the other hand, when we consider from the view of the coefficient, the ridge paramenters are decreased. If we focus on the decreased percents of ridge parameter, the distributions that have the highest percent to the lowest percent are Gamma, Normal and Poisson distribution for the coefficients that equal 2 and 3, but when the coefficients are equal 4, the highest percent increased to the lowest are Normal, Gamma and Poisson distribution. en_US
dc.language.iso th en_US
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.relation.uri http://doi.org/10.14457/CU.the.2011.770
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.subject การประมาณค่าพารามิเตอร์ en_US
dc.subject การวิเคราะห์การถดถอยโลจิสติก en_US
dc.subject การถดถอยริดจ์ en_US
dc.subject Parameter estimation en_US
dc.subject Logistic regression analysis en_US
dc.subject Ridge regression ‪(Statistics)‬ en_US
dc.title การหาค่าพารามิเตอร์ริดจ์ที่เหมาะสมเพื่อแก้ปัญหาพหุสัมพันธ์ในการวิเคราะห์ความถดถอยโลจิสติกแบบสองกลุ่ม en_US
dc.title.alternative Optimal ridge parameter for solving multicollinearity problem in binary logistic regression en_US
dc.type Thesis en_US
dc.degree.name สถิติศาสตรมหาบัณฑิต en_US
dc.degree.level ปริญญาโท en_US
dc.degree.discipline สถิติ en_US
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.email.advisor Kanlaya.V@Chula.ac.th
dc.identifier.DOI 10.14457/CU.the.2011.770


Files in this item

This item appears in the following Collection(s)

Show simple item record