Abstract:
งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการใส่ค่าสูญหายในตัวแปรตามและตัวแปรอิสระที่มีการสูญหายแบบนอนอิกนอร์เรเบิลสำหรับการวิเคราะห์การถดถอยเชิงพหุ เมื่ออัตราส่วนการสูญหายของตัวแปรตาม ต่อ การสูญหายของตัวแปรอิสระต่างกัน โดยมีวิธีการใส่ค่าสูญหายที่ใช้ในงานวิจัยนี้ คือ วิธี EM Algorithm, วิธี K-Nearest Neighbor Imputation (KNN) และวิธี Predictive Mean Matching Imputation(PMM) ข้อมูลที่ใช้ในการศึกษาได้จากการจำลองข้อมูล โดยมีสัดส่วนการสูญหายของข้อมูล 3 ระดับ คือ 10%, 15% และ 20% มีระดับการสูญหายแบบนอนอิกนอร์เรเบิล 3 ระดับ คือ ไม่มี, ปานกลาง และสูง และมีอัตราส่วนของสัดส่วนการสูญหายของตัวแปรตาม ต่อ สัดส่วนการสูญหายของตัวแปรอิสระ คือ 1:1, 1:1.5, 1:2, 1.5:1 และ 2:1 จากการเปรียบเทียบแต่ละวิธีการโดยใช้ค่าเฉลี่ยของค่าเฉลี่ยความคลาดเคลื่อนกำลังสองระหว่างค่าจริงกับค่าพยากรณ์ (Average mean square error: AMSE) พบว่า i)วิธีการใส่ค่าสูญหายทุกวิธีมีประสิทธิภาพดีกว่าเมื่อสัดส่วนการสูญหายของตัวแปรตามมีค่ามากกว่าสัดส่วนการสูญหายของตัวแปรอิสระ ii)วิธี EM Algorithm มีประสิทธิภาพดีที่สุด เมื่อเกิดการการสูญหายในตัวแปรอิสระที่มีค่าความค่าเบี่ยงเบนมาตรฐานต่ำในทุกกรณี iii)ส่วนใหญ่วิธี K-Nearest Neighbor Imputation(KNN) มีประสิทธิภาพดีที่สุด เมื่อค่าเบี่ยงเบนมาตรฐานของค่าความคลาดเคลื่อนสูง(90) และระดับการสูญหายแบบนอนอิกนอร์เรเบิลปานกลางและสูง iv)วิธี Predictive Mean Matching Imputation(PMM) มีประสิทธิภาพดีที่สุด เมื่อค่าเบี่ยงเบนมาตรฐานของค่าความคลาดเคลื่อนไม่สูง(10,30) และไม่มีระดับการสูญหายแบบนอนอิกนอร์เรเบิล .