DSpace Repository

การเปรียบเทียบประสิทธิภาพการพยากรณ์และการคัดเลือกตัวแปรของวิธีเพิ่มลดตัวแปรแบบขั้นตอน วิธีแลสโซ่ วิธีอีลาสติคเน็ต และวิธีแลสโซ่ปรับปรุง สำหรับผลกระทบขนาดเล็กและมีค่าสัมประสิทธิ์บางตัวเป็นศูนย์

Show simple item record

dc.contributor.advisor นัท กุลวานิช en_US
dc.contributor.author ทิฆัมพร สาระกอ en_US
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี en_US
dc.date.accessioned 2015-06-24T06:45:56Z
dc.date.available 2015-06-24T06:45:56Z
dc.date.issued 2556 en_US
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/43949
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2556 en_US
dc.description.abstract การวิจัยในครั้งนี้ มีวัตถุประสงค์เพื่อเปรียบเทียบประสิทธิภาพของวิธีการคัดเลือกตัวแปรอิสระเข้าสู่ตัวแบบการถดถอยที่มีลักษณะข้อมูลขนาดเล็กและมีค่าสัมประสิทธิ์การถดถอยบางตัวเป็นศูนย์ ด้วยวิธีเพิ่มลดตัวแปรแบบขั้นตอน วิธีแลสโซ่ วิธีอีลาสติคเน็ต และวิธีแลสโซ่ปรับปรุง โดยใช้ค่าเฉลี่ยความผิดพลาดในการตรวจจับเชิงบวก ค่าเฉลี่ยความผิดพลาดในการตรวจจับเชิงลบ และค่าเฉลี่ยของค่าคลาดเคลื่อนสัมบูรณ์โดยเฉลี่ยเป็นเครื่องมือในการวัดประสิทธิภาพของการคัดเลือกตัวแปร โดยที่การคัดเลือกตัวแปรวิธีใดที่ให้ค่าของเกณฑ์ทั้ง 3 ต่ำสุดโดยสอดคล้องกันจะถือว่าการคัดเลือกตัวแปรวิธีนั้นเป็นวิธีที่มีประสิทธิภาพและเหมาะสมกับข้อมูลที่จำลองขึ้นมามากที่สุด ผลการวิจัยพบว่า การคัดเลือกตัวแปรด้วยวิธีแลสโซ่ปรับปรุงนั้นให้ประสิทธิภาพดีที่สุดในหลายสถานการณ์ แต่สำหรับกรณีที่ร้อยละของจำนวนค่าสัมประสิทธิ์การถดถอยที่แท้จริงมีค่าไม่เป็นศูนย์เมื่อเทียบกับจำนวนตัวแปรอิสระอยู่ในระดับสูง การคัดเลือกตัวแปรด้วยวิธีอีลาสติคเน็ตจะให้ประสิทธิภาพที่ดีกว่าการคัดเลือกตัวแปรด้วยวิธีแลสโซ่ปรับปรุง en_US
dc.description.abstractalternative This study aimed to compare the performances of the subset selection methods: Stepwise, Lasso, Elastic Net and Adaptive Lasso for small and sparse signals. The criteria for the performance measuring are False Positive, False Negative and Mean Absolute Error. The Variable selection method that provides a value of 3 minimum criteria will be considered as the best method and fit with data are simulated most. The results showed the Adaptive Lasso offers the best performance in many situations. In case of the percentage of the sparse coefficients low, Elastic Net provides better performance than Adaptive Lasso. en_US
dc.language.iso th en_US
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.relation.uri http://doi.org/10.14457/CU.the.2013.1402
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.subject สถิติวิเคราะห์
dc.subject ตัวแปร (คณิตศาสตร์)
dc.subject Variables (Mathematics)
dc.title การเปรียบเทียบประสิทธิภาพการพยากรณ์และการคัดเลือกตัวแปรของวิธีเพิ่มลดตัวแปรแบบขั้นตอน วิธีแลสโซ่ วิธีอีลาสติคเน็ต และวิธีแลสโซ่ปรับปรุง สำหรับผลกระทบขนาดเล็กและมีค่าสัมประสิทธิ์บางตัวเป็นศูนย์ en_US
dc.title.alternative COMPARING THE PREDICTION ACCURACY AND SUBSET SELECTION PERFORMANCES OF STEPWISE, LASSO, ELASTIC NET AND ADAPTIVE LASSO FOR SMALL AND SPARSE SIGNALS. en_US
dc.type Thesis en_US
dc.degree.name วิทยาศาสตรมหาบัณฑิต en_US
dc.degree.level ปริญญาโท en_US
dc.degree.discipline สถิติ en_US
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.email.advisor nat.kulvanich@gmail.com en_US
dc.identifier.DOI 10.14457/CU.the.2013.1402


Files in this item

This item appears in the following Collection(s)

Show simple item record