DSpace Repository

การเปรียบเทียบวิธีคัดกรองตัวแปรสำหรับข้อมูลที่มีมิติสูง

Show simple item record

dc.contributor.advisor วิฐรา พึ่งพาพงศ์
dc.contributor.author ทวีศักดิ์ เล็กตระกูลชัย
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2017-10-30T04:35:32Z
dc.date.available 2017-10-30T04:35:32Z
dc.date.issued 2559
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/55329
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2559
dc.description.abstract งานวิจัยฉบับนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีคัดกรองตัวแปรอิสระจากวิธีการวิเคราะห์การถดถอยพหุเชิงเส้น วิธีลาสโซ วิธีการกรองตัวแปรที่เป็นอิสระโดยการคงตัวแปรที่สำคัญ วิธีการกรองตัวแปรที่เป็นอิสระโดยการคงตัวแปรที่สำคัญด้วยค่าความสัมพันธ์ของระยะห่าง และวิธีการกรองตัวแปรด้วยการถดถอยริดจ์แบบวนซ้ำ สำหรับข้อมูลที่มีมิติสูง โดยการจำลองข้อมูลที่มีขอบเขตต่างๆ กัน โดยที่กำหนดจำนวนตัวแปรอิสระเป็น 1000 , 2000 และ 4000 ซึ่งความสัมพันธ์ของตัวแปรอิสระเป็น 0.5 และ 0.9 ทั้งนี้จะใช้ค่าความถูกต้องในการคัดกรองตัวแปร ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของจำนวนตัวแปรอิสระที่น้อยที่สุดของเซตตัวแปรอิสระที่ผ่านการคัดกรอง ที่ทำให้เซตตัวแปรอิสระที่แท้จริงเป็นสับเซตของเซตตัวแปรอิสระที่ผ่านการคัดกรอง เป็นเครื่องมือในการเปรียบเทียบและวัดประสิทธิภาพ จากการศึกษาภายใต้ขอบเขตดังกล่าวผลปรากฏว่าวิธีลาสโซ สามารถคัดกรองตัวแปรได้มีประสิทธิภาพมากที่สุด รองลงมาคือวิธีการวิเคราะห์การถดถอยพหุเชิงเส้น วิธีการกรองตัวแปรที่เป็นอิสระโดยการคงตัวแปรที่สำคัญกับวิธีการกรองตัวแปรที่เป็นอิสระโดยการคงตัวแปรที่สำคัญด้วยค่าความสัมพันธ์ของระยะห่างมีความสามารถเท่าเทียมกัน และวิธีการกรองตัวแปรด้วยการถดถอยริดจ์แบบวนซ้ำเป็นวิธีที่มีประสิทธิภาพที่น้อยที่สุด
dc.description.abstractalternative This research aims to compare the variable screening of Multiple Linear Regression Analysis , Least Absolute Shrinkage And Selection Operator (LASSO) , Sure Independence Screening (SIS) , Distance Correlation Sure Independence Screening (DC-SIS) and Iteratively Thresholded Ridge Regression Screener (ITRRS) for high dimensional data. Here we use simulation data to compare the performance of variable screening methods. we set numbers of explanatory variables are 1000 , 2000 and 4000 which the correlation among explanatory variables are 0.5 and 0.9. The performance are compared in terms of the accuracy of variable screening , mean and standard deviation of the smallest number of sets variable screening when set true variable is a subset of variable screening. In this study, we found that LASSO has the best performance followed by Multiple Linear Regression Analysis , SIS and DC-SIS have same result and ITRRS has the worst performance.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2016.1184
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject การวิเคราะห์การถดถอย
dc.subject การถดถอยริดจ์
dc.subject Regression analysis
dc.subject Ridge regression (Statistics)
dc.title การเปรียบเทียบวิธีคัดกรองตัวแปรสำหรับข้อมูลที่มีมิติสูง
dc.title.alternative A COMPARISON OF VARIABLE SCREENING METHODS IN HIGH-DIMENSION DATA
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline สถิติ
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.email.advisor Vitara.P@Chula.ac.th,vitara@cbs.chula.ac.th
dc.identifier.DOI 10.58837/CHULA.THE.2016.1184


Files in this item

This item appears in the following Collection(s)

Show simple item record