Abstract:
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบวิธีการประมาณค่าพารามิเตอร์เมื่อมีค่าสูญหายเกิดขึ้นในตัวแปรอิสระของตัวประมาณตัวแบบความถดถอยโลจิสติก ที่ประมาณค่าสูญหายด้วยวิธี Mean Imputation (MEAN) วิธี Maximum Likelihood Estimation (MLE) วิธี Pseudo Maximum Likelihood Estimation (PMLE) และวิธี The Filling Method (FILL) เมื่อมีค่าสูญหายเกิดขึ้นในกรณีที่มีตัวแปรอิสระ 2 ตัว และเกิดค่าสูญหายในตัวแปรอิสระตัวใดตัวหนึ่ง โดยการจำลองข้อมูลกำหนดขนาดตัวอย่าง 40, 70 , 90 , 100 , 200 และ 400 ร้อยละการสูญหายของตัวแปรอิสระคือร้อยละ 5 ,10 และ 15 และค่าสหสัมพันธ์ระหว่างตัวแปรอิสระคือ 0 ,0.1 และ 0.2 โดยกำหนดค่าพารามิเตอร์เริ่มต้นแบ่งเป็น 2 กรณี คือ β₀,β₁,β₂ = 0.2 และ β₀,β₁ = 0.2 และ β₂ = 0.2 = 1 พิจารณาเปรียบเทียบค่าเฉลี่ยของความแตกต่างระหว่างค่าจริงและค่าประมาณ และระยะห่างมาหาลาโนบิสเฉลี่ย (Average Mahalanobis Distance) เป็นเกณฑ์ประกอบในการตัดสินใจ ข้อมูลที่ใช้ในการวิจัยครั้งนี้ได้จากการจำลองด้วยเทคนิคมอนติคาโลโดยการกระทำซ้ำ 1,000 รอบ ในแต่ละสถานการณ์ ผลการวิจัยสรุปได้ดังนี้ การเปรียบเทียบค่า BIAS และค่า AMH ของทั้ง 4 วิธีพบว่า ในกรณีขนาดตัวอย่าง น้อยกว่า 90 วิธี MEAN จะให้ค่า BIAS และค่า AMH น้อยที่สุด แต่ในกรณีขนาดตัวอย่าง มากกว่า 90 วิธี FILL จะให้ค่า BIAS และค่า AMH น้อยที่สุด โดยที่ค่า BIAS และค่า AMH มีแนวโน้มลดลงเมื่อขนาดตัวอย่างเพิ่มขึ้น เนื่องจากจำนวนข้อมูลที่เพิ่มขึ้นจะทำให้ความคลาดเคลื่อนลดลง ค่า BIAS และค่า AMH มีแนวโน้มเพิ่มขึ้นเมื่อสัดส่วนข้อมูลสูญหายในตัวแปรอิสระเพิ่มขึ้นเนื่องจากเมื่อร้อยละการสูญหายเพิ่มขึ้นจะส่งผลให้ข้อมูลที่มีอยู่ลดลง ทำให้ค่าความคลาดเคลื่อนเพิ่มขึ้น เมื่อค่าพารามิเตอร์เริ่มต้นของตัวแปรอิสระเพิ่มขึ้นค่า BIAS และค่า AMH มีแนวโน้มเพิ่มขึ้น และเมื่อระดับความสัมพันธ์ระหว่างตัวแปรอิสระเพิ่มขึ้นค่า BIAS และค่า AMH มีแนวโน้มเพิ่มขึ้น