Abstract:
Background : One of the most promising applications for electroencephalogram (EEG)-based brain computer interface is for stroke rehabilitation. Implemented as a standalone motor imagery (MI) training system or as part of a rehabilitation robotic system, many studies have shown benefits of using them to restore motor control in stroke patients. Hand movements have widely been chosen as MI tasks. Although potentially more challenging to analyze, wrist and forearm movement such as wrist flexion/extension and forearm pronation/supination should also be considered for MI tasks, because these movements are part of the main exercises given to patients in conventional stroke rehabilitation. This paper will evaluate the effectiveness of such movements for MI tasks.
Methods : Three hand and wrist movement tasks which were hand opening/closing, wrist flexion/extension and forearm pronation/supination were chosen as motor imagery tasks for both hands. Eleven subjects participated in the experiment. All of them completed hand opening/closing task session. Ten subjects completed two MI task sessions which were hand opening/closing and wrist flexion/extension. Five subjects completed all three MI tasks sessions. Each MI task comprised 8 sessions spanning a 4 weeks period. For classification, feature extraction based on common spatial pattern (CSP) algorithm was used. Two types were implemented, one with conventional CSP (termed WB) and one with an increase number of features achieved by filtering EEG data into five bands (termed FB). Classification was done by linear discriminant analysis (LDA) and support vector machine (SVM).
Results : Eight-fold cross validation was applied on EEG data. LDA and SVM gave comparable classification accuracy. FB achieved significantly higher classification accuracy compared to WB. The accuracy of classifying wrist flexion/extension task were higher than that of classifying hand opening/closing task in all subjects. Classifying forearm pronation/supination task achieved higher accuracy than classifying hand opening/closing task in most subjects but achieved lower accuracy than classifying wrist flexion/extension task in all subjects. Significant improvements of classification accuracy were found in nine subjects when considering individual sessions of experiments of all MI tasks. The results of classifying hand opening/closing task and wrist flexion/extension task were comparable to the results of classifying hand opening/closing task and forearm pronation/supination task. Classification accuracy of wrist flexion/extension task and forearm pronation/supination task was lower than those of hand movement tasks and wrist movement tasks.
Conclusion : High classification accuracy of the three MI tasks support the possibility of using EEG-based stroke rehabilitation system with these movements. Either LDA or SVM can equally be chosen as a classifier since the difference of their accuracies is not statistically significant. Significantly higher classification accuracy made FB more suitable for classifying MI task compared to WB. More training sessions could potentially lead to better accuracy as evident in most subjects in this experiment.