dc.contributor.author |
Pornpot Jiangkongkho |
|
dc.contributor.author |
Mansuang Arksornnukit |
|
dc.contributor.author |
Takahashi, Hidekazu |
|
dc.contributor.other |
Chulalongkorn University. Faculty of Dentistry |
|
dc.date.accessioned |
2019-06-27T23:32:39Z |
|
dc.date.available |
2019-06-27T23:32:39Z |
|
dc.date.issued |
2018-07-26 |
|
dc.identifier.citation |
Dental Materials Journal. vol.37, issue 4 (2018), p.582-591 |
en_US |
dc.identifier.issn |
1881-1361 (online) |
|
dc.identifier.issn |
0287-4547 (print) |
|
dc.identifier.uri |
http://cuir.car.chula.ac.th/handle/123456789/62295 |
|
dc.description.abstract |
This study aimed to investigate amount of γ-methacryloxypropyltrimethoxysilane (MPS) silanized on experimental nanosilica particles (NPs), amount of NP and amount of MPS silanized NP on flexural strength (FS), flexural modulus (FM), and fracture toughness (FT) of NP reinforced polymethyl methacrylate (PMMA). The chemisorbed amount of MPS was determined using elemental analysis. Six groups (n=8) were prepared with chemisorbed amount and mixed with PMMA-monomer to make 0.25, 0.5, 1, 5, 10 and 15% (w/w) of NP reinforced PMMA. PMMA without NP served as control. Seven groups (n=8) were prepared with 1% of NP silanized with 0, 0.061, 0.123, 0.246, 0.493, 0.987, and 1.974 gMPS/gsilica and mixed with PMMA-monomer to make NP reinforced PMMA. FS, FM, and FT were determined using 3-point bending test. One-way ANOVA and multiple comparisons showed that 0.246 gMPS/gsilica of 1% amount of silanized NP group was significantly highest in FS, FM, and FT compared to the others (p<0.05). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
The Japanese Society for Dental Materials and Devices |
en_US |
dc.relation.uri |
https://doi.org/10.4012/dmj.2017-142 |
|
dc.relation.uri |
https://www.jstage.jst.go.jp/article/dmj/37/4/37_2017-142/_article |
|
dc.rights |
© 2018 The Japanese Society for Dental Materials and Devices |
en_US |
dc.title |
The synthesis, modification, and application of nanosilica in polymethyl methacrylate denture base |
en_US |
dc.type |
Article |
en_US |
dc.email.author |
No information provided |
|
dc.email.author |
Mansuang.A@Chula.ac.th |
|
dc.email.author |
No information provided |
|
dc.subject.keyword |
Flexural properties |
en_US |
dc.subject.keyword |
Modification |
en_US |
dc.subject.keyword |
Nanosilica |
en_US |
dc.subject.keyword |
Silane coupling agent |
en_US |
dc.subject.keyword |
Synthesis |
en_US |
dc.identifier.DOI |
10.4012/dmj.2017-142 |
|