Abstract:
ศึกษาเปรียบเทียบประสิทธิภาพของแผนภูมิควบคุมคุณภาพ สำหรับการตรวจวัดการเปลี่ยนแปลงค่าเฉลี่ยของกระบวนการ แผนภูมิควบคุมที่นำมาเปรียบเทียบคือ แผนภูมิควบคุมผลรวมสะสม (CUSUM Control Chart) แผนภูมิควบคุมค่าเฉลี่ยและแผนภูมิควบคุมผลรวมสะสมที่ตอบสนองอย่างรวดเร็ว (FIR-Combined [X-bar] and CUSUM Control Chart) แผนภูมิควบคุมค่าเฉลี่ยเคลื่อนที่ปรับน้ำหนักแบบเอกซโพเนนเชียลที่ตอบสนองอย่างรวดเร็ว (FIR-EWMA Control Chart) และแผนภูมิควบคุมค่าเฉลี่ยเคลื่อนที่ปรับน้ำหนักแบบทั่วไป (GWMA Control Chart) โดยจะเปรียบเทียบค่าความยาววิ่งโดยเฉลี่ย (Average Run Length : ARL) ภายใต้ตัวแบบอนุกรมเวลาคงที่ในค่าเฉลี่ยและความแปรปรวน ถ้าแผนภูมิใดให้ค่าความยาววิ่งโดยเฉลี่ยน้อยที่สุดจะถือว่าแผนภูมินั้นมีประสิทธิภาพมากที่สุด โดยจะศึกษาภายใต้สถานการณ์ต่างๆ ดังนี้ เมื่อกระบวนการอยู่ภายใต้การควบคุมกำหนด micro[subscript 0] = 50 ความแปรปรวนของค่าคลาดเคลื่อนสุ่ม sigma[superscript 2] = 1 เมื่อเกิดการเปลี่ยนแปลงในค่าเฉลี่ยหลังคาบเวลา l = 100 กระบวนการจะมีค่าเฉลี่ยเปลี่ยนไปจาก micro[subscript 0] เป็น micro[subscript 1] = micro[subscript 0] + gamma และขนาดตัวอย่างที่ศึกษา (n) เท่ากับ 1, 3, 4, 6, 7, 9, 12, 13, 15, 17, 20, 25, 27, 30 การวิจัยครั้งนี้ได้ศึกษาโดยเทคนิคมอนติคาร์โล และใช้โปรแกรมภาษาฟอร์แทรน ในการจำลองข้อมูลให้มีลักษณะตามที่กำหนด ผลการวิจัยสามารถสรุปได้ดังนี้ ระดับการเปลี่ยนแปลงของค่าเฉลี่ยเพิ่มขึ้น 0.20%-0.59% ขนาดตัวอย่าง 1-3 แผนภูมิควบคุม GWMA มีประสิทธิภาพมากที่สุด ขนาดตัวอย่าง 4-30 แผนภูมิควบคุม FIR-EWMA มีประสิทธิภาพมากที่สุด ระดับการเปลี่ยนแปลงของค่าเฉลี่ยเพิ่มขึ้น 0.60%-2.59% ขนาดตัวอย่าง 1-30 แผนภูมิควบคุม FIR-EWMA มีประสิทธิภาพมากที่สุด ระดับการเปลี่ยนแปลงของค่าเฉลี่ยเพิ่มขึ้น 2.60%-6.00% ขนาดตัวอย่าง 1-6 แผนภูมิควบคุม FIR-EWMA มีประสิทธิภาพมากที่สุด ขนาดตัวอย่าง 7-12 แผนภูมิควบคุม FIR-[X-bar]-CUSUM, FIR-EWMA และ GWMA มีประสิทธิภาพมากที่สุด เท่ากันทั้ง 3 แผนภูมิ และขนาดตัวอย่าง 13-30 แผนภูมิควบคุมทั้ง 4 แบบมีประสิทธิภาพเท่ากัน ระดับการเปลี่ยนแปลงของค่าเฉลี่ยเพิ่มขึ้นมากกว่า 6.00% แผนภูมิควบคุมทั้ง 4 แบบจะมีประสิทธิภาพเท่ากัน แผนภูมิทั้ง 4 แบบจะมีค่า ARL น้อยลง เมื่อระดับการเปลี่ยนแปลงในค่าเฉลี่ยมากขึ้นหรือขนาดตัวอย่างมากขึ้น นอกจากนี้ค่าความน่าจะเป็นที่ค่าเฉลี่ยตัวอย่างจะออกนอกขอบเขตควบคุม เมื่อเกิดการเปลี่ยนแปลงในค่าเฉลี่ยของกระบวนการ ได้ค่าสอดคล้องกับค่า ARL กล่าวคือค่าความน่าจะเป็น จะมีค่าสูงขณะที่ ARL มีค่าต่ำ