Abstract:
Poly(d,l-lactice) (PDLLA) is biodegradable polymer which is widely used in biomedical application; but it has brittleness. This work aims to improve the properties of PDLLA by blending it with Poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) and poly(ethylene glycol) (MW=1000). These blending were spun to be fiber by melt-spinning technique, which were also developed by adding silver nanoparticles to improve antimicrobial efficiency. DSC data showed that the PDLLA/PHBV blends presented two distinct glass transitions (Tg) and they were not changed the position when comparing with polymer blends indicating that these blends were immiscible in all compositions. After that 50PDLLA/50PHBV was added by PEG1000, it was compatible with the PDLLA/PHBV matrix as evidenced by a single composition-dependent of of tg, crystallization (Tcc) and melting temperatures (Tm) of each polymer. For TGA data, Neat PDLLA wasw more thermally stable than neat PHBV and TGA curves comprising of those neat components showed two degradation steps. The addition of PEG1000 caused a shift of the onset temperature to a lower temperature. The addition of PHBV and PEG1000 caused an increase in elongation at break from 3.7% for PDLLA to 413.8% of PDLLA/PHBVG1000. The antibacterial results showed that it can against E. coli and S. aureus and can release silver ion last more than 18 days.