Abstract:
Cyclohexanol is mainly used for the production of adipic acid, which is an intermediate for the production of nylon-6,6. The production of cyclohexanol through the hydration of cyclohexene with an zcidic cataly, e.g., ZSM-5, is an important process in the petrochemical industry. However, this process yields low cyclohexene conversion, i.e. 7-10%, due to thermoddynamic equilibrium of the reaction. In this work, to improve the yield of cyclohexene conversion, the reaction was carried out at 80, 100, 120 and 140 C in a chromatographic reactor, in which the reaction and separation of the product took place, simultaneously. Results from this reactive separation system indicated that the thermodynamic equilibrium colud be overcome with essentially 100% selectivity for cyclohexanol at the temperature higher than 130 C. The effect of catalyst acidity on the cyclohexene hydration was also studied in a batch system with different catalysts, i.e., Amberlyst-15 and ZSM-5, at 80, 100, 120 and 130 C. The results showed that the catalyst acidity did affect the conversion of cyclohexene.