Abstract:
Tissue engineering is an emerging technology in the contemporary human health care administration, in which the basic understanding of cellular biology and bioengineering are combined together for developing feasible substitutes to aid in the clinical treatment. The primary objectives of these substitutes are to restore, maintain and/or improve tissue functions by mimicking the structure and biological function of native extracellular matrix (ECM) proteins. In the present contribution, natural biocompatible polymer, Chitosan and synthetic biocompatible polymer, poly(3- hydroxybutyrate) were fabricated into fibrous membranes by electrospinning technique. The 3D structure and topography of the obtained electrospun fibrous membranes resemble those of the collagen bundles in the natural ECM. The potential for use of the electrospun fibrous membranes as tissue scaffolds was evaluated with different cell types in terms of the cytotoxicity, attachment and the proliferation of the cells as well as the morphology of the seeded and the cultured cells. For enhancing the cell-scaffold interaction, the surface treatment was performed. These treatments not only improve the hydrophilicity on the surface substrates, but also provide the necessary active sites for interacting with cell-adhesive molecules such laminin. The results from in vitro cell studies suggested that the surface topography and surface chemistry have a significant influence on the particular cell responding. All of these results emphasized the importance of the surface properties on the cellular behaviour.