Abstract:
This study focuses on creating a biorefinery model for the production of bio- ethanol, lactic acid (LA) and bio succinic acid (BSA) from sugarcane and cassava by evaluating the-performance of the biorefinery in both environmental and economic aspects based on the life cycle assessment (LCA) approach. Global warning potential (GWP), energy resources, and profit were used as key performance indicators of the biorefinery within the cradle-to-gate system boundary. Based mostly on secondary data sources, the inventory data were extracted for the unit processes within the biorefinery boundary and used for LCA analysis by using commercial software, Sima Pro 7.1, with Eco-Indicator 95 and CML 2 baseline 2000 methods. In addition. five scenarios were created by varying ratios of feedstocks and products. The results indicated that increasing sugarcane consumption led to better performance in GWP. AP, EP. and energy resources. This was due to the high amount of avoided steam and electricity generated from bagasse although cassava residues (pulp and rhizome) had been fully utilized. Increasing BSA ratio led to better AP and EP but worse performance in GWP and energy resources since LA process consumed high steam. sulfuric acid, and CSL. In the other hand, much higher electricity consumption in BSA process could cause worse GWP and energy resources. Finally, eco-efficiency indicators were developed as a single index for evaluating both environmental and economic aspects. Scenario 5, with highest sugarcane usage and BSA production, was shown to be the most suitable scenario, which had the highest eco-efficiency in all aspects.