Abstract:
การพยากรณ์อนุกรมเวลาเป็นการคาดคะเนผลลัพธ์จากข้อมูลในอตีต เพื่อเป็นแนวทางในการวางแผนการดำเนินงานด้านต่าง ๆ ในอนาคต งานวิจัยฉบับนี้ได้รวบรวมข้อมูลอนุกรมเวลาจากแหล่งข้อมูลต่าง ๆ ในประเทศไทยจำนวน 40 ชุด ทั้งปริมาณการผลิตสินค้า มูลค่าการจำหน่ายสินค้า ปริมาณเชื้อเพลิง ปริมาณน้ำในเขื่อน และจำนวนผู้ใช้บริการรถไฟฟ้า ซึ่งมีรูปแบบแนวโน้มและฤดูกาลของข้อมูลอนุกรมเวลาที่หลากหลาย สำหรับศึกษาการประยุกต์วิธีการทำให้เรียบแบบเอ็กซ์โปเนนเชียล (ES) ในการพยากรณ์ และเปรียบเทียบความแม่นยำของผลการพยากรณ์อนุกรมเวลาที่ได้จาก 3 ตัวแบบ คือ วิธีทำให้เรียบแบบเอ็กซ์โปเนนเชียล (ES), ตัวแบบผสมระหว่างตัวแบบ ES ร่วมกับตัวแบบโครงข่ายประสาทเทียม (ES+ANN) และตัวแบบผสมระหว่างตัวแบบ ES ร่วมกับตัวแบบซัพพอร์ทเวกเตอร์แมชชีน (ES+SVM) โดยมีเกณฑ์รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root Mean Square Error : RMSE) เป็นเกณฑ์ในการเปรียบเทียบความแม่นยำของตัวแบบ ผลการศึกษาพบว่าตัวแบบผสมระหว่างตัวแบบ ES ร่วมกับตัวแบบโครงข่ายประสาทเทียม (ES+ANN) มีความแม่นยำในการพยากรณ์อนุกรมเวลามากที่สุดสำหรับข้อมูลทั้ง 40 ชุด