Abstract:
งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบตัวแบบในการจำแนกประเภทข้อมูลคลื่นไฟฟ้าหัวใจโดยใช้ตัวแบบการเรียนรู้เชิงลึก 3 ตัวแบบได้แก่ (1)โครงข่ายประสาทเทียมแบบเพอร์เซ็ปตรอนหลายชั้น (MLPs) (2)โครงข่ายคอนโวลูชันเต็มรูป (FCNs) และ (3)โครงข่ายแบบเรสซิดวลหรือเรสเนท (ResNet) ชุดข้อมูลที่ใช้ทดสอบประกอบด้วย 2 ส่วนได้แก่ ส่วนของข้อมูลจำลอง และส่วนของข้อมูลจริงใช้ข้อมูลจากฐานข้อมูล MIT-BIH Arrythmia ในแต่ละชุดข้อมูลจะทำการเพิ่มสิ่งแปลกปนในข้อมูล 4 แบบได้แก่ Wandering baseline, Muscle tremor, AC interference และ Motion artifacts และเปรียบเทียบประสิทธิภาพของแต่ละตัวแบบด้วยวิธีครอสวาลิเดชัน แบ่งข้อมูลเป็น 10 ส่วนแล้วพิจารณา ค่าความถูกต้อง ค่าความแม่นยำ และค่าความครบถ้วน สำหรับส่วนของข้อมูลจำลอง พบว่าเมื่อพิจารณาค่าความถูกต้องแล้ว ในภาพรวมตัวแบบ MLPs มีค่าเฉลี่ยที่ต่ำกว่า FCNs และ ResNet ค่อนข้างเยอะ ในขณะที่ตัวแบบ FCNs และ ResNet ได้ผลออกมาค่อนข้างดี และได้ผลลัพธ์ใกล้เคียงกันในข้อมูลแต่ละชุด ในชุดข้อมูลที่มีสิ่งแปลกปนประเภท Wandering baseline ค่าเฉลี่ยมีค่าลดลงสำหรับตัวแบบ MLPs ในชุดข้อมูลที่มีสิ่งแปลกปนประเภท Muscle tremor และ AC interference ไม่พบว่าค่าเฉลี่ยลดลงอย่างชัดเจนในทุกกรณี และในชุดข้อมูลที่มีสิ่งแปลกปนประเภท Motion artifacts พบว่าค่าเฉลี่ยลดลงเล็กน้อยเมื่อใช้ตัวแบบ MLPs สำหรับค่าความแม่นยำและค่าความครบถ้วนพบว่ามีทิศทางเดียวกับค่าความถูกต้อง สำหรับข้อมูลจริง ในภาพรวมมีความใกล้เคียงกับผลการศึกษาในส่วนของข้อมูลจำลอง แต่ในชุดข้อมูลที่มีสิ่งแปลกปน Wandering baseline พบว่าประสิทธิภาพลดลงในทุกตัวแบบ