Abstract:
ศูนย์บริการข้อมูลลูกค้าเป็นช่องทางสำคัญในการติดต่อระหว่างภาคธุรกิจและลูกค้า ตัวชี้วัดที่สำคัญของการทำงานของศูนย์บริการข้อมูลลูกค้าคือความพึงพอใจของลูกค้า ข้อมูลหลักที่ได้จากศูนย์บริการข้อมูลลูกค้าคือเสียงสนทนา ทำให้ผู้วิจัยสนใจที่จะศึกษาแนวทางในการสร้างตัวแบบรู้จำบุคลิกภาพจากเสียง ข้อมูลเสียงและเพศถูกเก็บจากหน่วยตัวอย่าง 92 คน พร้อมกับข้อมูลบุคลิกภาพโดยใช้แบบวัด MPI (Maudsley Personality Inventory) แบบวัดดังกล่าวแบ่งบุคลิกภาพออกเป็น 2 ด้าน คือด้าน E-scale (Extraversion และ Introversion) และ N-scale (Neuroticism และ Stability) ซึ่งนำมาใช้ในการพัฒนาตัวแบบจำแนกบุคลิกภาพทั้งสองด้าน เทคนิคที่ใช้ในการพัฒนาตัวแบบประกอบด้วย Logistic regression, SVM, Random forest และ Artificial neural network โดยพบว่าตัวแบบที่พัฒนาด้วยเทคนิค Artificial neural network มีประสิทธิภาพสูงสุดในการรู้จำ E-scale โดยมีค่า Positive predictive value (ค่าวัดประสิทธิภาพของ Introversion) เท่ากับ 0.71 และค่า Negative predictive value (ประสิทธิภาพของ Extraversion) เท่ากับ 0.75 ในส่วนของ N-scale ไม่พบตัวแบบที่พัฒนาด้วยเทคนิคใดมีประสิทธิภาพเพียงพอ ในการศึกษาครั้งนี้พบว่าบุคลิกภาพ Extraversion และ Introversion ซึ่งสามารถนำมาประยุกต์กับงานภาคธุรกิจ สามารถรู้จำจากเสียงสนทนาในบริบทศูนย์บริการข้อมูลลูกค้า โดยสามารถนำไปใช้มอบหมายพนักงานที่มีบุคลิกภาพเหมือนกับลูกค้าเพื่อเพิ่มความพึงพอใจของลูกค้าในการติดต่อสื่อสาร ภาคธุรกิจยังสามารถนำข้อมูลบุคลิกภาพเหล่านี้ไปใช้ต่อยอดในการแนะนำผลิตภัณฑ์ หรือโฆษณา ให้เหมาะสมกับลูกค้าแต่ละคน