DSpace Repository

Building detection from remote sensing images using yolo

Show simple item record

dc.contributor.advisor Nagul Cooharojananone
dc.contributor.advisor Petarpa Boonserm
dc.contributor.author Noppadon Pumpong
dc.contributor.other Chulalongkorn University. Faculty of Science
dc.date.accessioned 2021-09-21T08:57:53Z
dc.date.available 2021-09-21T08:57:53Z
dc.date.issued 2020
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/76992
dc.description Thesis (M.Sc.)--Chulalongkorn University, 2020
dc.description.abstract Building detection system through the remote sensing of images has been widely studied. In this thesis, we propose a model for detecting buildings at airports in Asia through different levels of remote sensing image. The proposed model is improved using the You Only Look Once (YOLO) algorithm based on the convolutional neural network (CNN). We also adjust an inputted image to our model using the Jet Saliency Map. The buildings to be detected in this study are the passenger terminals, the control towers, the cargo buildings, and the hangars. The data set has been collected from 322 different airports in Asia. Furthermore, our improved model is also examined for efficiency and accuracy. The results show that it can detect the intended objects efficiently and provides higher accuracy than the original model.
dc.description.abstractalternative การตรวจจับอาคารจากภาพรับรู้ระยะไกลนั้นได้รับการศึกษาอย่างกว้างขวาง ซึ่งในวิทยานิพนธ์นี้เราจะเสนอแบบจำลองสำหรับการตรวจจับอาคารของสนามบินในภูมิภาคเอเชียผ่าน ภาพรับรู้ระยะไกลในระดับความสูงหลายระดับแบบจำลองที่ได้นำเสนอนั้นได้รับการปรับปรุง จากการใอัลกอริทึมโยโลซึงอิงตามแนวคิดของโครงข่ายประสาทแบบคอนโวลูชัน นอกจากนี้ เรายังปรับปรุงรูปภาพที่จะใช้ส่งเข้าไปในแบบจำลองของเราโดยใช้แผนภาพเด่นชัดแบบเจท โดยอาคารที่เราต้องการตรวจจับสำหรับการศึกษาครั้งนี้ ได้แก่ อาคารผู้โดยสาร อาคารควบคุม อาคารขนส่งสินค้าและโรงเก็บเครื่องบิน ซึ่งชุดข้อมูลดังกล่าวได้รับการเก็บรวบรวมจากสนาม บิน 322 แห่งในภูมิภาคเอเชีย นอกจากนี้แบบจำลองที่ถูกปรับปรุงแล้วยังได้รับการตรวจสอบ ประสิทธิภาพและความแม่นยำซึ่งผลลัพธ์จากการตรวจสอบแสดงให้เห็นว่าสามารถตรวจจับ วัตถุที่ต้องการได้อย่างมีประสิทธิภาพและให้ความแม่นยำสูงกว่าแบบจำลองโยโลดั้งเดิม
dc.language.iso en
dc.publisher Chulalongkorn University
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2020.6
dc.rights Chulalongkorn University
dc.subject.classification Computer Science
dc.title Building detection from remote sensing images using yolo
dc.title.alternative การตรวจจับอาคารจากภาพรับรู้ระยะไกลโดยใช้โยโล
dc.type Thesis
dc.degree.name Master of Science
dc.degree.level Master's Degree
dc.degree.discipline Applied Mathematics and Computational Science
dc.degree.grantor Chulalongkorn University
dc.identifier.DOI 10.58837/CHULA.THE.2020.6


Files in this item

This item appears in the following Collection(s)

Show simple item record