DSpace Repository

การรู้จำและการบ่งตัวตนของเสียงสภาพแวดล้อมและเสียงปืน-ปืนใหญ่ ด้วย MLP SVM และ DNN

Show simple item record

dc.contributor.advisor วิทยากร อัศดรวิเศษ
dc.contributor.advisor ผเดิม หนังสือ
dc.contributor.author ชินวัฒน์ จัตุรัส
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2021-09-22T23:28:59Z
dc.date.available 2021-09-22T23:28:59Z
dc.date.issued 2563
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/77120
dc.description วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2563
dc.description.abstract วิทยานิพนธ์ฉบับนี้เสนอแนวทางการรู้จำและการบ่งตัวตนของเสียงสภาพแวดล้อมและเสียงปืน-ปืนใหญ่ โดยเสนอแบบจำลอง Support Vector Machine (SVM) Multi-Layer Perceptron (MLP) และ Deep Neural Networks (DNNs) อีกสองชนิด ได้แก่ Convolutional Neural Networks (CNNs) และ Recurrent Neural Networks (RNNs) วัตถุประสงค์หลักเพื่อศึกษาการรู้จำเสียงสภาพแวดล้อมและเสียงปืน-ปืนใหญ่ และขยายขอบเขตให้สามารถจำแนกระหว่างเสียงที่ไม่เป็นอันตรายและเสียงที่เป็นอันตราย ปัญหาหลักของการจำแนกเสียงเกิดจากสัญญาณเสียงมีคุณลักษณะที่ไม่คงที่ (Non-Stationary) และข้อมูลมีขนาดมิติทางเวลาสูง ด้วยเหตุนี้วิทยานิพนธ์นี้จึงเสนอแนวทางการแก้ปัญหาด้วยการประมวลผลก่อนหน้าด้วยผลการแปลงฟูเรียร์สั้น (Short-Time Fourier Transform, STFT) แล้วทำการสกัดคุณลักษณะด้วยการวิเคราะห์องค์ประกอบหลัก (Principal Components Analysis, PCA) และทำการจำแนกด้วย SVM และ MLP นอกจากนี้ด้วยสมมติฐาน เบื้องต้นที่ว่า STFT สามารถแปลงจากสัญญาณเสียงที่มีมิติขนาดหนึ่งมิติมาเป็นสัญญาณภาพ (image) ที่มีขนาดสองมิติได้ ทำให้เราสามารถนำ spectrogram ที่ได้จาก STFT มาประยุกต์ใช้กับการเรียนรู้ลึกชนิด CNN หรือ RNN ได้ในกรณีนี้ CNN และ RNN จะทำหน้าที่สกัดคุณลักษณะ และจำแนกไปพร้อมกับในระหว่างการเรียนรู้ ผลการทดลองวิทยานิพนธ์สรุปได้ว่าเครื่องมือที่สามารถทำนายเสียงสภาพแวดล้อมและเสียงปืน-ปืนใหญ่ ได้แม่นยำสุดคือ DNN ชนิด CNN
dc.description.abstractalternative This thesis proposes classification and identification of environmental and gun-artillery sound using Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and two Deep Neural Networks (DNNs); Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). The main objective is to study environment and gun-artillery sound classification and extend it to the classification between the harmful sound and environmental sound, issues in Sound Classification are from the non-stationary characteristic and high-dimensional temporal data. As a result, we proposes Short-Time Fourier Transform (STFT) for pre-processing. Next, the features will be extracted Principal Components Analysis (PCA) and then will be classified by SVM and MLP. In addition, according to assumption that, STFT is able to transform one dimensional speech signal to image which is two dimensional signal. Thus, we can use spectrogram from STFT with both of CNNs and RNNs approaches. In this case, CNNs and RNNs are able to extract the features in training process. The results conclude that, in case of environment and gun-artillery sound classification, CNNs of DNNs achieved the highest accuracy.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2020.1079
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject.classification Computer Science
dc.title การรู้จำและการบ่งตัวตนของเสียงสภาพแวดล้อมและเสียงปืน-ปืนใหญ่ ด้วย MLP SVM และ DNN
dc.title.alternative Classification and identification of environmental and gun-artillery sound using MLP SVM and DNN
dc.type Thesis
dc.degree.name วิศวกรรมศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิศวกรรมและเทคโนโลยีการป้องกันประเทศ
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2020.1079


Files in this item

This item appears in the following Collection(s)

Show simple item record