Abstract:
This research aims to investigate the synthesis of MCF-C as catalyst for dehydrogenation of ethanol. The study was classified into 3 parts. In the first part, the mesocellular foam silica (MCF-Si) was converted to mesocellular foam carbon using a surfactant residue as a carbon source, and followed by testing the dehydrogenation of ethanol to acetaldehyde. Surfactant residue in the inside of MCF-Si could be used as the carbon source for MCF-C synthesis. The obtained material could maintain the meso-structure, and exhibited higher activity for ethanol dehydrogenation in comparison to MCF-Si. For the second part, MCF-C was examined for 12 h for catalyst deactivation at various temperature. The low operating temperature at 300 °C exhibited the highest ethanol conversion changed, which was accorded to the higher coke formation to obstruct the catalysis process. Thus, the operating temperature of ethanol dehydrogenation using MCF-C as catalyst was significantly affected to the coke formation. The final part was examined for the effect of pore size of MCF-C to optimize the selectivity and yield of acetaldehyde. MCF-C was synthesized with the various ratios of TMB/P123 and tested in ethanol dehydrogenation reaction. The higher ratio of TMB/P123 significantly changed the physical properties as pore size and provided higher catalytic activity.