Abstract:
อุตสาหกรรมการท่องเที่ยวเป็นหนึ่งในอุตสาหกรรมที่ใหญ่ที่สุดในโลกและส่งผลโดยตรงต่อเศรษฐกิจของประเทศไทย การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เข้ามาท่องเที่ยวแต่ละเดือนมีประโยชน์ในการนำไปใช้วางแผนรับมือกับความต้องการท่องเที่ยวของชาวต่างชาติแต่ละประเทศ เนื่องจากรูปแบบการพยากรณ์ที่เฉพาะเจาะจงสามารถบ่งบอกถึงลักษณะของการท่องเที่ยวของแต่ละประเทศได้ งานวิจัยนี้มีวัตถุประสงค์เพื่อนำเสนอและเปรียบเทียบรูปแบบการพยากรณ์สำหรับนักท่องเที่ยวต่างชาติที่เข้ามาในประเทศไทย ประเทศที่จะทำการวิเคราะห์ ได้แก่ ประเทศจีน ญี่ปุ่น เกาหลี มาเลเซีย รัสเซีย อังกฤษ สหรัฐอเมริกา สิงคโปร์ อินเดีย ออสเตรเลีย ลาว ฮ่องกง และเยอรมัน ข้อมูลที่ใช้ในการวิจัยนี้คือจำนวนนักท่องเที่ยวชาวต่างชาติซึ่งถูกบันทึกเป็นข้อมูลรายเดือนตั้งแต่ เดือนมกราคม พ.ศ. 2556 ถึงตุลาคม พ.ศ. 2562 รูปแบบการพยากรณ์ที่นำมาใช้ ได้แก่ รูปแบบ ค่าเฉลี่ยเคลื่อนที่ตามฤดูกาลอัตโนมัติ (SARIMA) ตรีโกณมิติตามฤดูกาลการแปลงบ็อกซ์ค็อกซ์ ค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนไหวอัตโนมัติแนวโน้มและฤดูกาล (TBATS) และโครงข่ายประสาทเทียม (ANN) จากนั้นวัดผลความแม่นยำโดยค่าเฉลี่ยเปอร์เซ็นต์ความผิดพลาดแบบสัมบูรณ์ (MAPE) ผลการศึกษาพบว่า ประเทศส่วนใหญ่ที่ศึกษา SARIMA เป็นวิธีที่ให้ค่าความคลาดเคลื่อนน้อยที่สุด อย่างไรก็ดีมีประเทศที่การพยากรณ์แบบอนุกรมเวลายังไม่ให้ผลเป็นที่น่าพอใจ (MAPE เกิน 8%) ได้แก่ ประเทศจีน อินเดีย และรัสเซีย และได้ใช้วิธี ANN ในการพยากรณ์เปรียบเทียบเพิ่มเติม ซึ่งมีเพียงประเทศจีนเท่านั้นที่ ANN ได้ผลแม่นยำกว่าวิธีอื่น