Abstract:
ในปัจจุบันเทคโนโลยีใหม่ ๆ ได้ถูกพัฒนาอย่างต่อเนื่องเพื่อปรับปรุงและรองรับการผลิตขั้นสูง เนื่องจากสถานการณ์การแข่งขันที่ดุเดือดระหว่างอุตสาหกรรมการผลิตต่าง ๆ ดังนั้นเครื่องจักรกลอัจฉริยะและระบบการผลิตแบบอัจฉริยะจึงถูกคาดหวังว่าจะมีบทบาทสำคัญในอนาคตอันใกล้ เครื่องกลึงซีเอ็นซีถูกใช้อย่างกว้างขวางในอุตสาหกรรมการผลิตขึ้นสูงที่หลากหลาย ความตรงเป็นพารามิเตอร์ที่มีความสำคัญในกระบวนการกลึง เนื่องจากส่งผลกระทบโดยตรงต่อการประกอบชิ้นงาน อย่างไรก็ตามการควบคุมและการตรวจติดตามความตรงขณะกลึงชิ้นงานทำได้ยาก นอกจากนี้เครื่องกลึงซีเอ็นซียังไม่สามารถปรับตั้งค่าได้แบบทันทีทันใดขณะกลึงชิ้นงานโดยไม่หยุดเครื่องจักร ดังนั้นงานวิจัยนี้จึงมีจุดประสงค์ในการพัฒนาแบบจำลองการพยากรณ์ความตรงในกระบวนการกลึงซีเอ็นซีสำหรับชิ้นงานเหล็กกล้าคาร์บอนและอะลูมิเนียมเพื่อที่จะปรับปรุงกระบวนการควบคุมและตรวจติดตามความตรงโดยการประยุกต์ใช้โครงข่ายประสาทเทียมสองชั้นแบบป้อนข้อมูลไปข้างหน้า ซึ่งถูกสอนด้วยอัลกอริทึมแบบแพร่ย้อนกลับของเลเวนเบิร์ก-มาร์คอร์ด อัตราส่วนแรงตัดถูกนำมาใช้ในการคำนวณความตรงภายใต้เงื่อนการตัดต่าง ๆ การแปลงเวฟเลทแบบดอเบชีส์ถูกใช้ในการแยกแรงตัดพลวัตออกเป็น 10 ระดับ เพื่อที่จะกำจัดสัญญาณรบกวนอื่น ๆ ทำให้แบบจำลองมีความแม่นยำมากยิ่งขึ้น ปัจจัยในการตัดที่เกี่ยวข้องประกอบไปด้วยความเร็วตัด อัตราป้อนตัด ความลึกตัด รัศมีจมูกมีดตัด และมุมคายเศษโลหะ แบบจำลองโครงข่ายประสาทเทียมสำหรับพยากรณ์ความตรงของชิ้นงานเหล็กกล้าคาร์บอนและอะลูมิเนียมที่พัฒนาขึ้นจะถูกนำมาเปรียบเทียบกับแบบจำลองการพยากรณ์ความตรงแบบอื่น ๆ คือ แบบจำลองโครงข่ายประสาทเทียมสำหรับพยากรณ์ความตรงของชิ้นงานเหล็กกล้าคาร์บอน แบบจำลองโครงข่ายประสาทเทียมสำหรับพยากรณ์ความตรงของชิ้นงานอะลูมิเนียม และวิธีการวิเคราะห์ด้วยการถดถอยแบบพหุคูณ จากผลการวิจัยพบว่า แบบจำลองโครงข่ายประสาทเทียมสำหรับพยากรณ์ความตรงของชิ้นงานเหล็กกล้าคาร์บอนและอะลูมิเนียมที่ถูกเสนอนั้นมีความแม่นยำที่ 76.27% สำหรับชิ้นงานเหล็กกล้าคาร์บอนและอะลูมิเนียม มีความแม่นยำที่ 82.57% สำหรับชิ้นงานเหล็กกล้าคาร์บอน และมีความแม่นยำที่ 69.97% สำหรับชิ้นงานอะลูมิเนียม ในขณะที่วิธีการวิเคราะห์ด้วยการถดถอยแบบพหุคูณมีความแม่นยำที่ 74.23% แม้ว่าแบบจำลองโครงข่ายประสาทเทียมสำหรับพยากรณ์ความตรงของชิ้นงานเหล็กกล้าคาร์บอนและแบบจำลองโครงข่ายประสาทเทียมสำหรับพยากรณ์ความตรงของชิ้นงานอะลูมิเนียมจะมีความแม่นยำที่มากกว่าที่ 86.53% และ 70.70% ตามลำดับ แต่ผลการพยากรณ์ความตรงของแบบจำลองโครงข่ายประสาทเทียมทั้งสามแบบจำลองไม่มีความแตกต่างกันอย่างมีนัยสำคัญเมื่อทดสอบใน Paired t-Test