Abstract:
การตรวจคลื่นไฟฟ้าหัวใจ เป็นหัตถการสำคัญที่ใช้วินิจฉัยความผิดปกติของหัวใจ แต่การตรวจวัดคลื่นไฟฟ้าหัวใจนั้นก็อาจมีสัญญาณรบกวนแบบต่าง ๆ ที่เกิดขึ้นได้จากหลายสาเหตุ ซึ่งอาจทำให้ผลการวินิจฉัยทางการแพทย์ผิดพลาด งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบอัลกอริทึมสำหรับการจำแนกประเภทข้อมูลคลื่นไฟฟ้าหัวใจที่มีสัญญาณรบกวนด้วย Symbolic Aggregate Approximation in Vector Space (SAXVSM) และ Bag of Symbolic Fourier Approximation Symbols in Vector Space (BOSSVS) เพื่อให้สามารถเลือกใช้อัลกอริทึมในการจำแนกประเภทข้อมูลคลื่นไฟฟ้าหัวใจได้อย่างเหมาะสม โดยใช้ข้อมูลคลื่นไฟฟ้าหัวใจ ECG5000 ซึ่งอยู่ในฐานข้อมูล Physionet ซึ่งข้อมูลชุดนี้ถูกบันทึกโดยศูนย์การแพทย์ Beth Israel Deaconess Medical Center (BIDMC) ที่เมืองบอสตัน ประเทศสหรัฐอเมริกา และผู้วิจัยได้จำลองการสัญญาณรบกวนในคลื่นไฟฟ้าหัวใจ 4 แบบ ได้แก่ 1) Electromyography (EMG) 2) Powerline Interference 3) Baseline Wander และ 4) Composite ที่ระดับ 25% 50% และ 100% เพื่อเปรียบเทียบประสิทธิภาพของการจำแนกประเภทจังหวะการเต้นของหัวใจปกติและผิดปกติด้วย SAXVSM และ BOSSVS จากการวิจัยสามารถสรุปได้ว่า สำหรับข้อมูลทั้ง 13 ชุด ทั้ง SAXVSM และ BOSSVSM มีประสิทธิภาพดีใกล้เคียงกัน โดยมีค่าความถูกต้องและคะแนน F1 อยู่ที่ 97-99% ค่าความแม่นยำอยู่ที่ 95-99% และค่าความระลึกอยู่ที่ 97-100% แต่ BOSSVS ใช้เวลาในการประมวลผลนานกว่า SAXVSM