Abstract:
การวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการพยากรณ์ราคาปิดหุ้นรายวันในอนาคต โดยใช้ตัวแบบอารีม่าซึ่งสร้างจากวิธีการค้นหาแบบกริด โครงข่ายประสาทเทียมและตัวแบบผสมในการพยากรณ์ราคาของหุ้น ภายใต้ตัวอย่างหุ้นที่ถูกเลือกมาตามระดับความผันผวนจากสูงไปต่ำ ในกลุ่มอุตสาหกรรมเทคโนโลยีและชิ้นส่วนอิเล็กทรอนิกส์ ได้แก่ HANA, DELTA และ SVI ตามลำดับ โดยเก็บข้อมูลราคาปิดรายวันของหุ้นตั้งแต่เดือนตุลาคม พ.ศ. 2559 ถึงเดือนตุลาคม พ.ศ. 2564 ( 5 ปีย้อนหลัง ) ซึ่งอาศัยการแบ่งชุดข้อมูลฝึกสอนด้วยวิธี ตรวจสอบไขว้ (rolling forward validation) ทั้งวิธีตรวจสอบไขว้แบบสะสม และวิธีตรวจสอบไขว้แบบ moving window ซึ่งผลการวิจัยพบว่า เมื่อใช้ค่าเฉลี่ยของร้อยละความผิดพลาดสัมบูรณ์เป็นเกณฑ์ในการคัดเลือกตัวแบบ ทั้งสองวิธีการแบ่งชุดข้อมูลย่อยนั้น โครงข่ายประสาทเทียมมีความแม่นยำมากที่สุดในการพยากรณ์ราคาปิดของหุ้น HANA, DELTA และ SVI รวมถึงตัวแบบผสมดังกล่าวไม่จำเป็นต้องมีประสิทธิภาพดีกว่าการใช้แต่ละตัวแบบเพียงลำพังเสมอไป ตัวแบบอารีม่าซึ่งสร้างจากวิธีการค้นหาแบบกริดสามารถพยากรณ์ได้ดีกว่าในหุ้นที่มีระดับความผันผวนกลางและระดับต่ำ ในขณะที่โครงข่ายประสาทเทียมสามารถพยากรณ์ได้ดีในทุกระดับความผันผวนราคาหุ้น