DSpace Repository

การเปรียบเทียบประสิทธิภาพของวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี lasso + MLE and a bootstrap lasso + partial ridge

Show simple item record

dc.contributor.advisor วิฐรา พึ่งพาพงศ์
dc.contributor.author ณิชากร ไทยวงษ์
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2022-07-01T04:17:31Z
dc.date.available 2022-07-01T04:17:31Z
dc.date.issued 2564
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/79117
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564
dc.description.abstract งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+MLE และวิธี Lasso+ Partial Ridge ซึ่งในการศึกษานี้จะจำลองข้อมูลทั้งหมด 8 ชุด และเปรียบเทียบประสิทธิภาพของช่วงความเชื่อมั่นที่ได้จากการสร้างช่วงความเชื่อมั่นทั้งหมด 4 วิธี ได้แก่ วิธี Parametric Bootstrap Lasso+MLE, วิธี Parametric Bootstrap Lasso+Partial Ridge, วิธี Paired Bootstrap Lasso+MLE และวิธี Paired Bootstrap Lasso+Partial Ridge โดยใช้เกณฑ์ในการเปรียบเทียบประสิทธิภาพของช่วงความเชื่อมั่น คือ ความกว้างเฉลี่ยของช่วงความเชื่อมั่น ค่าความน่าจะเป็นครอบคลุม ค่าความแม่นยำ และค่าความไว จากการศึกษาภายใต้ขอบเขตดังกล่าวผลปรากฏว่า วิธี Parametric Bootstrap Lasso+Partial Ridge มีประสิทธิภาพในการสร้างช่วงความเชื่อมั่นมากที่สุด รองลงมาคือ วิธี Paired Bootstrap Lasso+Partial Ridge และวิธี Paired Bootstrap Lasso+MLE ตามลำดับ และวิธีที่มีประสิทธิภาพในการสร้างช่วงความเชื่อมั่นน้อยที่สุด ก็คือ วิธี Parametric Bootstrap Lasso+MLE ดังนั้นจึงสรุปได้ว่า การสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกโดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+Partial Ridge มีประสิทธิภาพมากกว่าวิธี Lasso+MLE
dc.description.abstractalternative This research is aimed to compare the efficiency of methods to construct confidence intervals for parameters in high-dimensional logistic regression models between a bootstrap Lasso + MLE and a bootstrap Lasso + Partial Ridge. In this study, there are 8 simulation data sets. Also, the confidence intervals are constructed by 4 methods: (i) Parametric Bootstrap Lasso+MLE (ii) Parametric Bootstrap Lasso+Partial Ridge (iii) Paired Bootstrap Lasso+MLE, and (iv) Paired Bootstrap Lasso+Partial Ridge. The performance of all 4 methods is compared in terms of average width value, coverage probability value, precision value, and recall value. From our simulation studies, they show that a Parametric Bootstrap Lasso+Partial Ridge is the best performance method to construct confidence intervals for parameters in high-dimensional logistic regression models, followed by a Paired Bootstrap Lasso+Partial Ridge method and a Paired Bootstrap Lasso+MLE method respectively, and the worse performance method is a Parametric Bootstrap Lasso+MLE method. So, we can conclude that a bootstrap Lasso + Partial Ridge method has the most effective more than that a bootstrap Lasso + MLE method.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2021.1052
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject การวิเคราะห์การถดถอยโลจิสติก
dc.subject ทฤษฎีการประมาณค่า ‪(สถิติ)‬
dc.subject Logistic regression analysis
dc.subject Estimation theory
dc.subject.classification Computer Science
dc.title การเปรียบเทียบประสิทธิภาพของวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี lasso + MLE and a bootstrap lasso + partial ridge
dc.title.alternative Efficiency comparison on method to construct confidence intervals for parameters in high-dimensional logistic regression models between a bootstrap lasso + MLE and a bootstrap lasso + partial ridge
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline สถิติ
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2021.1052


Files in this item

This item appears in the following Collection(s)

Show simple item record