Abstract:
การจำแนกประเภทภาพแบบละเอียดเป็นปัญหาการจำแนกประเภทภาพที่อยู่ในหมวดหมู่หลักเดียวกัน เช่น ชนิดของนก, รุ่นของรถยนต์และรุ่นของเครื่องบิน โดยปัญหาหลักของการจำแนกประเภทภาพแบบละเอียดคือมีความผันผวนภายในประเภทและความเหมือนระหว่างประเภทสูง ทำให้งานวิจัยส่วนใหญ่มุ่งเน้นไปที่การระบุตำแหน่งของวัตถุหรือชิ้นส่วนสำคัญของภาพด้วยการออกแบบโครงสร้างแบบจำลองที่มีความซับซ้อนเพื่อแก้ปัญหาดังกล่าว ในงานวิจัยนี้ได้นำเสนอวิธีการเพิ่มประสิทธิภาพของความแม่นยำในการจำแนกประเภทซึ่งประกอบด้วยแบบจำลองสองระดับที่ทำหน้าที่แยกกันในการระบุตำแหน่งและจำแนกประเภท โดยการระบุตำแหน่งวัตถุทำหน้าที่หาพื้นที่ในรูปภาพที่มีวัตถุอยู่ด้วยสมมติฐานพื้นที่ต่อเนื่องที่มีขนาดใหญ่ที่สุดบนการรวมของผังฟีเจอร์ ซึ่งสกัดมาจากหลังจากคอนโวลูชันนิวรอลเน็ตเวิร์ค หลังจากนั้นในขั้นตอนการจำแนกประเภท ได้ปรับปรุงฟังก์ชันสูญเสียค่าสูงสุดอย่างอ่อนด้วยการเพิ่มมาจินเชิงมุมปรับค่าได้ในค่ามุมระหว่างฟีเจอร์เวกเตอร์และเวกเตอร์ศูนย์กลางประจำแต่ละประเภทในระหว่างการฝึกสอนแบบจำลอง วิธีการในงานวิจัยนี้สามารถฝึกสอนแบบจำลองได้แบบเอ็นทูเอ็นโดยไม่ต้องใช้กล่องขอบเขตในการฝึกสอนเพิ่มเติม ทั้งนี้ผลการทดลองแสดงให้เห็นว่า เทคนิคที่งานวิจัยนี้นำมาใช้มีประสิทธฺภาพที่ดีบนชุดข้อมูลสามชุดที่มีการใช้อย่างกว้างขวางในการทดลองเกี่ยวกับการจำประแนกประเภทภาพแบบละเอียด