Abstract:
เอกสารฉบับนี้นำเสนอการทำนายดัชนีสุขภาพของมอเตอร์เหนี่ยวนำแบบเรียลไทม์ ที่ใช้ในโรงงานปิโตรเคมีกรณีศึกษาผ่านการใช้เซ็นเซอร์อัจฉริยะและแบบจำลองการเรียนรู้ของเครื่อง ที่ในปัจจุบันวิศวกรซ่อมบำรุง ใช้เทคนิคการบำรุงรักษาตามเวลาและตามเงื่อนไขในการตรวจสอบและวินิจฉัยสภาพของมอเตอร์เหนี่ยวนำเป็นระยะๆ ซึ่งส่งผลต่อมอเตอร์ยังคงขัดข้องเสียหาย โดยการพังเสียหายดังกล่าวบางครั้งทำให้กระบวนการผลิตทั้งหมดต้องหยุดเพื่อทำการบำรุงรักษาแบบฉุกเฉิน ส่งผลให้บริษัทสูญเสียรายได้มหาศาล ดังนั้น ผู้บริหารระดับสูงจึงตัดสินใจเปลี่ยนวิธีในการปฏิบัติงานเดิมเป็นการบำรุงรักษาเชิงคาดการณ์แบบเรียลไทม์แทน โดยเซ็นเซอร์อัจฉริยะถูกติดตั้งบนมอเตอร์เหนี่ยวนำนี้ใช้เพื่อรวบรวมข้อมูลที่จำเป็นเกี่ยวกับสถานะการทำงานของมอเตอร์และเพื่อระบุความผิดปกติของมอเตอร์ก่อนที่จะเกิดความล้มเหลวขึ้น โดยแบบจำลองการเรียนรู้ของเครื่องทั้งสี่แบบที่ได้สร้างขึ้นมาของงานวิจัย ได้รับการตรวจสอบและเปรียบเทียบประสิทธิภาพผลลัพธ์เพื่อประเมินว่าแบบจำลองใดดีที่สุด ประกอบด้วย แบบจำลองโครงข่ายประสาทเทียม , แบบจำลองการเพิ่มประสิทธิภาพอนุภาคฝูง, แบบจำลองต้นไม้การตัดสินใจส่งเสริมการไล่ระดับสีและแบบจำลองป่าไม้สุ่ม ซึ่งเมตริกประสิทธิภาพมาตรฐานที่ใช้เพื่อเปรียบเทียบประสิทธิภาพสัมพัทธ์ระหว่างแต่ละแบบจำลองการเรียนรู้ของเครื่องต่างๆ ประกอบด้วย ค่าความถูกต้องแม่นยำ , ค่าความแม่นยำ , การเรียกคืน , คะแนน F1 และ เส้นโค้ง AUC-ROC ผลการวิจัยพบว่าแบบจำลองการเพิ่มประสิทธิภาพอนุภาคฝูง ไม่เพียงแต่ได้ค่าความเที่ยงตรงแบบถ่วงน้ำหนักเฉลี่ยสูงสุดเท่านั้น แต่ยังสามารถแยกแยะสถานะดัชนีสุขภาพของมอเตอร์ของมอเตอร์เหนี่ยวนำได้ถูกต้องกว่ารุ่นอื่นๆ