Abstract:
การศึกษาเรื่องความฟุ้งซ่านได้รับความนิยมแพร่หลายเนื่องจากความฟุ้งซ่านเกี่ยวเนื่องกับปัญหาทางอารมณ์และสภาพจิตใจที่ไม่มีสุข การศึกษานี้จึงมีความสนใจที่จะพัฒนาแบบจำลองการเรียนรู้ของเครื่องสำหรับฝังในอุปกรณ์พกพาที่สามารถจัดหมวดหมู่ความฟุ้งซ่าน เพื่อช่วยให้ผู้คนสามารถติดตามความคิดของตนเองได้ ในการศึกษานี้ใช้เครื่องวัดสัญญาณไฟฟ้าคลื่นสมองชนิดจำนวนอิเล็กโทรดน้อย เพื่อบันทึกข้อมูลสภาวะสมองที่จะใช้ในการสร้างแบบจำลองทำนาย เพราะความสะดวกและเป็นความมิตรต่อผู้ใช้งาน โดยการศึกษาส่วนใหญ่ของการเรียนรู้ของเครื่องโดยใช้สัญญาณไฟฟ้าคลื่นสมองนั้นให้ผลลัพธ์ดีในระดับบุคคล แต่ในระดับกลุ่มมีเพียงบางการศึกษาที่ทำการพัฒนาแบบจำลอง ด้วยเหตุนี้จุดประสงค์ของการวิจัยนี้คือแบบจำลองระดับกลุ่มที่มีความแม่นยำสูง ดังนั้นจึงเลือกใช้การทวนสอบชนิด Leave One Participant Out Cross Validation (LOPOCV) เพื่อประเมินความถูกต้องของแบบจำลอง ผลการศึกษาพบว่าการใช้เทคนิค baseline normalization ในขั้นตอนคัดเลือกคุณลักษณะช่วยเพิ่มประสิทธิภาพ และแบบจำลองที่ใช้คือ ซพพอร์ตเวกเตอร์ แมชชีน ที่มีความแม่นยำของโมเดลที่ดีสุดเป็น 75.6 เปอร์เซนต์