DSpace Repository

การสังเคราะห์ข้อความเพื่อเพิ่มตัวอย่างการตรวจจับข้อความประทุษวาจาในข้อความภาษาไทย

Show simple item record

dc.contributor.advisor สุกรี สินธุภิญโญ
dc.contributor.author ธโนภาส วรรณวโรทร
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2022-07-23T05:18:05Z
dc.date.available 2022-07-23T05:18:05Z
dc.date.issued 2564
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/80136
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564
dc.description.abstract ในงานวิจัยนี้เป็นการศึกษาวิธีการแก้ไขปัญหาในการจำแนกข้อความประทุษวาจา ด้วยวิธีการสังเคราะห์ข้อความขึ้นเพื่อแก้ไขปัญหาของการเกิดชุดข้อมูลไม่สมดุลที่ปรากฏในข้อมูลที่เก็บรวบรวมมาจากทวิตเตอร์ ซึ่งหลังจากเก็บรวบรวม ทำความสะอาดข้อมูลและติดฉลากข้อมูลแล้ว ผู้วิจัยได้สร้างตัวอย่างเพิ่มเติม 3 วิธีคือ คือ 1. การสุ่มตัวอย่างส่วนน้อยเพิ่มด้วยการสังเคราะห์ (Synthetic Minority Over-sampling Technique: SMOTE)  2. เทคนิคการสร้างข้อความเพิ่ม (Text generation)  3.เทคนิคคำฝังตัว (Word Embedding) เป็นวิธีการในการใช้สังเคราะห์ตัวอย่างเพิ่มเติม ให้เกิดความสมดุลก่อนที่จะนำข้อมูลชุดใหม่ที่สร้างขึ้นใหม่แบ่ง ตัวอย่างเป็น 3 รูปแบบในการจำแนกข้อความประทุษวาจา คือ 1. อัลกอริทึมนาอีฟเบย์ (Navie bays) 2. หน่วยความจำระยะสั้นแบบยาว (LSTM)  3. หน่วยความจำระยะสั้นแบบยาว ร่วมกับ โครงข่ายประสาทแบบคอนโวลูชัน (LSTM + CNN)  เพื่อเป็นการจำแนกข้อความประทุษวาจา ในชุดข้อความที่เป็นข้อความธรรมดา โดยผลการทดลองการจำแนกข้อความมีความหมายเชิงประทุษวาจา ซึ่งในการทดลองแรกได้ลองใช้ข้อมูลที่ไม่สมดุล จากผลการทดลองทั้ง 3 รูปแบบที่ใช้ในการจำแนกซึ่งให้ความถูกต้องไม่สูงเท่าที่ควร จากนั้นจึงทำการแก้ไขปัญหาในชุดของข้อมูลทำให้ได้ความถูกต้องสูงขึ้นในทุกชุดของทุกโมเดล
dc.description.abstractalternative In this paper, we present a method for solving a problem in classifying text messages containing Hate Speech by synthesizing messages to solve the problem of the imbalance in text corpuses that were collected from Twitter. After collecting, cleansing, and labeling the data, we augmented samples using three methods, namely 1) Synthetic Minority Over-sampling Technique (SMOTE), 2) Text generation technique, and 3) Word Embedding. In this research, we used three text classification techniques: Naive Bayes, Long Short-Term Memory (LSTM), and a combination of Long Short-Term Memory and Convolutional Neural Network (CNN). The accuracy of the text classification on imbalanced text data was not high. However, after we added the text from minority class to the training set, the accuracy become higher in all classification models.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2021.852
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject.classification Computer Science
dc.title การสังเคราะห์ข้อความเพื่อเพิ่มตัวอย่างการตรวจจับข้อความประทุษวาจาในข้อความภาษาไทย
dc.title.alternative Text synthesis to add an example for detecting hate speech in Thai massages
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิทยาศาสตร์คอมพิวเตอร์
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2021.852


Files in this item

This item appears in the following Collection(s)

Show simple item record