Abstract:
ในปัจจุบันมีวารสารทางด้านวิชาการอยู่เป็นจำนวนมากหลากหลายประเภท ส่งผลให้ผู้เขียนบทความ ต้องใช้เวลามากไปกับการค้นหาคัดเลือกวารสารทางด้านวิชาการที่เหมาะสมกับเนื้อหาของแต่ละบทความของผู้เขียน ก่อนจะส่งบทความให้ทางบรรณาธิการวารสารทำการพิจารณารับบทความในลำดับถัดไป เนื่องจากทางบรรณาธิการได้รับบทความจำนวนมาก จึงทำให้ใช้เวลามากในการพิจารณาบทความ งานวิจัยฉบับนี้จึงเล็งเห็นว่าการนำระบบแนะนำเข้ามาช่วยวิเคราะห์เพื่อแนะนำวารสารที่เหมาะสมกับบทความนั้นจะทำให้กระบวนการตัดสินใจในการส่งบทความเพื่อตีพิมพ์มีประสิทธิภาพยิ่งขึ้น โดยจะใช้ข้อมูลจาก Thai Journals Online (ThaiJO) ซึ่งจะใช้ข้อมูลจากบทความภาษาไทยและบทความภาษาอังกฤษในการวิเคราะห์ในงานวิจัยนี้ โดยในงานวิจัยนี้รวมการศึกษาข้อมูลที่ใช้ การทำความสะอาดข้อมูล และการทำแบบจำลองสำหรับระบบแนะนำ โดยจะทำแบบจำลองจากการคำนวณหาความสำคัญจากข้อความด้วยเทคนิคความถี่ของคำ-ส่วนกลับความถี่ของเอกสาร (Term Frequency - Inverse Document Frequency: TF-IDF) และการวิเคราะห์ความคล้ายคลึงระหว่างบทความและวารสารโดยใช้ Cosine Similarity แล้วจึงจัดอันดับค่าคะแนนเพื่อแนะนำบทความที่เหมาะสม จากผลการทดลองในงานวิจัยนี้การตรวจสอบความสมเหตุสมผลแบบไขว้จำนวน 10 พับ (10-fold cross-validation) พบว่าเมื่อเรานำข้อมูลคำสำคัญและบทคัดย่อจากทั้งภาษาไทยและภาษาอังกฤษมารวมกัน ระบบสามารถแนะนำออกมาได้ค่าความแม่นยำที่วัดด้วย Hit Rate ได้ค่าสูงสุดที่ 0.87965 ซึ่งมากกว่าแบบจำลองที่ใช้ข้อมูลภาษาอังกฤษอย่างเดียว (0.84948) หรือ แบบจำลองที่ใช้ข้อมูลภาษาไทยอย่างเดียว (0.80383) และได้ค่าความแม่นยำที่สูงกว่าการตรวจสอบความสมเหตุสมผลแบบไขว้จำนวน 5 พับและการทดลองแบบจำลองในลักษณะความคล้ายระหว่างบทความ