DSpace Repository

ระบบแนะนําร้านอาหารในประเทศไทยแบบผสมด้วยการเรียนรู้เชิงลึก

Show simple item record

dc.contributor.advisor บุญเสริม กิจศิริกุล
dc.contributor.author อภิสรา แซ่ลิ้ม
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2022-07-23T05:18:07Z
dc.date.available 2022-07-23T05:18:07Z
dc.date.issued 2564
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/80139
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564
dc.description.abstract ในยุคที่ข้อมูลมากมายมหาศาล ระบบผู้แนะนำมีบทบาทสำคัญอย่างมากตราบใดที่ผู้บริโภคยังคงมีความต้องการใช้ข้อมูลและส่งข้อมูลมากขึ้น ธุรกิจจำนวนมากได้ใช้ระบบผู้แนะนำเพื่อเป็นตัวช่วยให้แก่ผู้ใช้ได้ทำการค้นหาสินค้าหรือรายการโดยอ้างอิงจากข้อมูลการบริโภคของผู้ใช้ที่ผ่านมา โครงข่ายประสาทเชิงลึกได้แสดงให้เห็นผลลัพธ์ที่น่าสนใจในหลากหลายสาขาวิชา รวมถึงระบบผู้แนะนำในช่วงไม่กี่ปีที่ผ่านมา อย่างไรก็ตาม การศึกษาดังกล่าวได้ละเว้นการใช้ข้อมูลเสริมในแบบจำลอง ดังนั้น ในงานวิจัยนี้จึงนำเสนอระบบการแนะนำเชิงลึกด้วยโครงข่ายประสาท ซึ่งประกอบด้วยการกรองการทำงานร่วมกันเชิงลึกเพื่อเรียนรู้ปัจจัยแฝงของการโต้ตอบของผู้ใช้และสินค้า และเพิ่มประสิทธิภาพของแบบจำลองด้วยข้อมูลคุณลักษณะของสินค้าโดยใช้เพอร์เซปตรอนแบบหลายชั้น และรวมทั้งสองแบบจำลองนี้เข้าด้วยกัน เรียกว่า  แบบจำลอง DNNRecs นอกเหนือจากโครงสร้างของแบบจำลองแล้ว ยังได้มีการนำเสนอวิธีการทำวิศวกรรมคุณลักษณะเพื่อสร้างคุณลักษณะใหม่จากข้อความวิจารณ์โดยใช้เทคนิค tf-idf งานวิจัยนี้ได้ใช้ชุดข้อมูลที่เกิดขึ้นจริงในประเทศไทยและแสดงให้เห็นถึงประสิทธิภาพของแบบจำลองที่นำเสนอ    
dc.description.abstractalternative In the age of flooded information, Recommender Systems play a crucial role as long as consumers consume more content and submit more data. Many businesses have implemented Recommender Systems to assist users find items based on their previous interactions. Deep neural networks have demonstrated promising results in a variety of disciplines, including recommendation systems in the past few years. However, such studies ignore auxiliary information input. In this work, we propose a deep recommendation system with neural networks that consists of deep collaborative filtering to learn user and item interaction latent factor and multi-layer perceptrons to enrich the performance with textual information and combines these two sub-models, called DNNRecs. Apart from our model framework, we also contribute a feature engineering method to create new features from review text by using technique tf-idf. Extensive experiments on one real-life dataset in Thailand demonstrate the effectiveness of the proposed model.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2021.858
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject.classification Computer Science
dc.title ระบบแนะนําร้านอาหารในประเทศไทยแบบผสมด้วยการเรียนรู้เชิงลึก
dc.title.alternative Deep hybrid restaurant recommender system in Thailand
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิทยาศาสตร์คอมพิวเตอร์
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2021.858


Files in this item

This item appears in the following Collection(s)

Show simple item record