DSpace Repository

การผสานการวิเคราะห์เชิงเทคนิคและแบบจำลองการเรียนรู้เชิงลึกสำหรับการซื้อขายน้ำมันดิบ 

Show simple item record

dc.contributor.advisor บุญเสริม กิจศิริกุล
dc.contributor.advisor พิตติพล คันธวัฒน์
dc.contributor.author วิศรุต เลิศทวีเดช
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2022-07-23T05:18:13Z
dc.date.available 2022-07-23T05:18:13Z
dc.date.issued 2564
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/80147
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564
dc.description.abstract น้ำมันดิบเป็นสินค้าอุปโภคที่มีความสำคัญในโลก เพราะน้ำมันดิบถือเป็นแหล่งพลังงานหลักของโลก ราคาของน้ำมันดิบนั้นมีส่วนเกี่ยวข้องในหลาย ๆ อุตสาหกรรม เช่น การขนส่ง, การผลิตพลังงานไฟฟ้า และอุตสาหกรรมปิโตรเคมี ดังนั้นการคาดการณ์ราคาน้ำมันดิบจึงมีความสำคัญสำหรับหลายภาคส่วน แต่ก็เป็นเรื่องที่ท้าทายมากเช่นกัน เนื่องจากราคาน้ำมันดิบมีความผันผวนสูง มีหลานงานวิจัยจำนวนมากที่เสนอการใช้การเรียนรู้ของเครื่องเพื่อทำนายราคาน้ำมัน โดยงานวิจัยนี้ได้นำเสนอเทคนิคการใช้โครงข่ายประสาทเทียมแบบผสานกันระหว่างโครงข่ายประสาทเทียมคอนโวลูชัน (Convolutional neural networks - CNN) และ หน่วยความจำระยะสั้นแบบยาว (Long short-term memory - LSTM) เพื่อใช้ทำนายแนวโน้มราคาน้ำมันและส่งสัญญาณการซื้อขายน้ำมันให้ดียิ่งขึ้นเมื่อเทียบกับกลยุทธ์การซื้อขายน้ำมันแบบดั้งเดิม โดยหลักการของแบบจำลองคือ CNN สามารถตรวจจับรูปแบบในตำแหน่งต่าง ๆ ของข้อมูล Time Series ได้ ในขณะที่ LSTM สามารถใช้รักษาความจำทั้งระยะสั้นและระยะยาวสำหรับข้อมูล Time Series ได้ การผสานคุณสมบัติเหล่านี้จึงเพิ่มความสามารถให้แบบจำลองได้ จากการศึกษานี้พบว่าการผสานกันของ CNN และ LSTM สามารถเพิ่มความสามารถในการทำกำไรจากการซื้อขายน้ำมันดิบได้ในระยะยาว
dc.description.abstractalternative Crude oil is an important commodity in the world because it is the primary source of global energy production. Crude oil price involves in various industries such as transportation, power generation, and petrochemical. Therefore, the prediction of crude oil price is vital for many sectors, but it is very challenging because of its high volatility. Several research papers proposed different machine learning techniques to forecast crude oil prices. In this study, we propose an artificial neural network (ANN) with various combinations of convolutional neural networks (CNN) and long short-term memory (LSTM) to predict crude oil price trends and provide better trading signals for crude oil compared to traditional trading strategies. The concept of our model is that CNN could detect patterns in different locations of time series data, while LSTM could maintain memory for both short-term and long-term for time series data. The combination of their properties could enhance the performance of the neural network. This study found that the combination of CNN and LSTM could significantly improve trading performance in the long run.  
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2021.856
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject.classification Computer Science
dc.subject.classification Computer Science
dc.subject.classification Computer Science
dc.subject.classification Economics
dc.subject.classification Economics
dc.title การผสานการวิเคราะห์เชิงเทคนิคและแบบจำลองการเรียนรู้เชิงลึกสำหรับการซื้อขายน้ำมันดิบ 
dc.title.alternative Combining technical analysis and deep learning models for crude oil trading
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิทยาศาสตร์คอมพิวเตอร์
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2021.856


Files in this item

This item appears in the following Collection(s)

Show simple item record