Abstract:
สำหรับการจำแนกโรคอ้อยที่พบมากบนพันธุ์ขอนแก่น 3 ซึ่งเป็นพันธุ์อ้อยที่ได้รับความนิยมมากที่สุดในประเทศไทย จะให้ความสำคัญในการวิเคราะห์โรคที่ส่งผลรุนแรงต่อใบอ้อย เช่น โรคที่เกิดจากแบคทีเรีย เชื้อรา และแมลง จากการตรวจหาและระบุโรคที่เกิดขึ้นในอ้อยซึ่งต้องการผู้เชี่ยวชาญที่มีประสบการณ์และเวลา จึงมีแนวคิดในการสร้างระบบที่ช่วยในการจำแนกโรคอ้อยที่มีความแม่นยำอย่างอัตโนมัติ ซึ่งส่งผลให้การวินิจฉัยโรคทำได้รวดเร็วมากขึ้น เป็นระบบอัจฉริยะสำหรับจำแนกประเภทและลักษณะอาการของโรคอ้อย (Intelligent System Diagnosis Sugarcane Diseases with Deep Convolutional Neural Network) เป็นระบบที่ให้ผู้ใช้งานอัพโหลดรูปภาพใบอ้อย สามารถบ่งบอกโรคอ้อยและระบุสาเหตุพร้อมวิธีการป้องกันหรือควบคุม โดยระบบมีความสามารถในการจำแนกชนิดของโรคอ้อย 5 คลาส ได้แก่ โรคเส้นกลางใบแดง (Red Rot) โรคราสนิม (Rust) โรคใบจุดวงแหวน (Ring Spot) โรคใบขาว (White Leaf) และใบสมบูรณ์ (Normal) ที่มีค่า Mean Average Precision (mAP) สูงถึง 0.8681 หรือร้อยละ 86.81