DSpace Repository

Automatic cardioembolic stroke prediction using clinical features and non-contrast CT images

Show simple item record

dc.contributor.advisor Ekapol Chuangsuwanich
dc.contributor.advisor Proadpran Punyabukkana
dc.contributor.author Pasit Jakkrawankul
dc.contributor.other Chulalongkorn University. Faculty of Engineering
dc.date.accessioned 2022-11-02T09:44:36Z
dc.date.available 2022-11-02T09:44:36Z
dc.date.issued 2021
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/80832
dc.description Thesis (M.Sc.)--Chulalongkorn University, 2021
dc.description.abstract Cardioembolic stroke is a dangerous subtype of ischemic stroke. The patients with this subtype need special treatments to prevent recurrent events. The prevention is vital since only one more event could result in fatal damage. Hence, the classification into the categories of cardioembolic and non-cardioembolic subtypes is essential. We developed a multimodal machine learning model that can integrate the basic clinical information and non-contrast CT images to predict the risk of cardioembolic stroke. Our method reached the areas under the receiver operating characteristic curve (ROC-AUC) of 0.840 by using a dataset of only 227 samples of stroke patients. Besides the capability to classify the stroke subtypes, the method can provide the interpretability of the model decision in the forms of the heatmap for large infarct localization and the feature impacts for interpretation. Our approach can be widely applied since we need only the basic clinical information and non-contrast CT which are commonly available in general hospitals.
dc.description.abstractalternative โรคหลอดเลือดสมองอุดตันจากลิ่มเลือดหัวใจเป็นโรคหลอดเลือดสมองตีบประเภทหนึ่งที่มีความอันตรายอย่างมาก ผู้ป่วยที่เป็นโรคหลอดเลือดสมองชนิดนี้ต้องการการรักษาที่เฉพาะเจาะจงเพื่อป้องกันไม่ให้เกิดการอุดตันขึ้นอีก การป้องกันนั้นมีความสำคัญอย่างยิ่งเนื่องจากการอุดตันของโรคหลอดเลือดสมองชนิดนี้ก่อให้เกิดความเสียหายต่อเนื้อสมองเป็นบริเวณกว้าง ดังนั้นการจำแนกประเภทของโรคหลอดเลือดสมองตีบชนิดนี้ออกจากประเภทอื่นๆจึงเป็นสิ่งสำคัญ เราจึงพัฒนาโมเดลปัญญาประดิษฐ์ที่สามารถวิเคราะห์ทั้งข้อมูลทางคลินิกขั้นพื้นฐานและภาพถ่าย CT แบบปกติเพื่อทำนายความเสี่ยงของโรคหลอดเลือดสมองอุดตันจากลิ่มเลือดหัวใจ ประสิทธิภาพของวิธีการของเราซึ่งวัดด้วยพื้นที่ภายใต้กราฟ receiver operating characteristic curve (ROC-AUC) นั้นอยู่ที่ 0.840 โดยใช้ชุดข้อมูลของผู้ป่วยโรคหลอดเลือดสมองเพียง 227 ตัวอย่าง นอกจากความสามารถในการจำแนกประเภทย่อยของโรคหลอดเลือดสมองตีบแล้ว เรายังสามารถระบุบริเวณที่สมองขาดเลือดและความสำคัญของอาการทางคลินิกได้อีกด้วย นอกจากนั้น วิธีการของเราสามารถนำมาใช้ได้อย่างกว้างขวาง เนื่องจากเราต้องการเพียงข้อมูลทางคลินิกขั้นพื้นฐานและการตรวจ CT แบบปกติซึ่งมีอยู่ในโรงพยาบาลทั่วไป
dc.language.iso en
dc.publisher Chulalongkorn University
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2021.105
dc.rights Chulalongkorn University
dc.subject.classification Computer Science
dc.subject.classification Medicine
dc.title Automatic cardioembolic stroke prediction using clinical features and non-contrast CT images
dc.title.alternative ระบบอัตโนมัติสำหรับการประเมินความเสี่ยงโรคหลอดเลือดสมองอุดตันจากลิ่มเลือดหัวใจโดยใช้ข้อมูลทางคลินิกและภาพถ่ายซีทีแสกนสมองปกติ
dc.type Thesis
dc.degree.name Master of Science
dc.degree.level Master's Degree
dc.degree.discipline Computer Science
dc.degree.grantor Chulalongkorn University
dc.identifier.DOI 10.58837/CHULA.THE.2021.105


Files in this item

This item appears in the following Collection(s)

Show simple item record