DSpace Repository

การคาดการณ์เวลาเดินทางบนท้องถนนระหว่างพิกัดสองจุดในกรุงเทพมหานคร ด้วยวิธีการเรียนรู้ของเครื่อง

Show simple item record

dc.contributor.advisor พิศิษฎ์ จารุมณีโรจน์
dc.contributor.author ปวริศ เวชวรรณกิจกุล
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2023-02-03T04:00:34Z
dc.date.available 2023-02-03T04:00:34Z
dc.date.issued 2565
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/81530
dc.description วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2565
dc.description.abstract ระยะเวลาเดินทางบนท้องถนนในกรุงเทพมหานครนั้นมีความไม่แน่นอน เนื่องจากความแออัดของการจราจร อย่างไรก็ดี ข้อมูลดังกล่าวกลับมีความสำคัญในการจัดเส้นทางการเดินรถเพื่อธุรกิจ ซึ่งส่วนใหญ่มักใช้ค่าประมาณการณ์ซึ่งอาจมีความคลาดเคลื่อนไปจากความเป็นจริง ส่งผลทำให้ประสิทธิภาพของแผนงานดังกล่าวลดต่ำลง ด้วยเหตุดังกล่าว ผู้วิจัยจึงได้ทำการพัฒนาตัวแบบที่สามารถการคาดการณ์ระยะเวลาเดินทางบนท้องถนนในกรุงเทพมหานครด้วยการเรียนรู้ของเครื่อง โดยอ้างอิงจากข้อมูลที่ทุกคนสามารถเข้าถึงได้โดยไม่มีค่าใช้จ่าย ทำให้ผู้ใช้งานสามารถนำไปใช้พัฒนา หรือบูรณาการร่วมกับแผนงานเดิมได้ เริ่มต้น ผู้วิจัยได้ทำการเก็บข้อมูล Mobile Probe จาก iTIC foundation จากนั้นจึงแปลงข้อมูลดังกล่าวออกเป็น Origin-Destination Pairs แล้วคัดเลือกเฉพาะชุดข้อมูลที่มีพิกัดอยู่ภายในเขตกรุงเทพมหานครไปใช้สร้างต้นแบบการเรียนรู้ของเครื่องผ่านอัลกอริทึมแบบต่าง ๆ จนได้อัลกอริทึมที่สามารถสร้างต้นแบบที่มีประสิทธิภาพสูงที่สุดได้ ผู้วิจัยพบว่า จากอัลกอริทึมต่าง ๆ Random forest ถือเป็นอัลกอริทึมที่สามารถสร้างต้นแบบที่มีศักยภาพสูงที่สุด ในขณะที่ XGBoost และ CatBoost มีแนวโน้มที่ดีในการนำไปพัฒนาต่อ เนื่องจากใช้ระยะเวลาในการสร้างต้นแบบน้อย
dc.description.abstractalternative While road travel time in Bangkok is uncertain, due largely to traffic congestion, accurate travel time is, however, important for both businesses and research – especially for vehicle route planning that normally adopts estimates that may be far different from their real values. To properly predict road travel time in Bangkok with less data restrictions, several machine learning approaches have been herein explored, based solely on publicly available data so that users can further extend or combine this prediction module with others for their own proposes at the least cost. In doing so, we first collect data from iTIC foundation and later transform such a data set into Origin-Destination Pairs, excluding those outside Bangkok area. Various machine learning approaches are then applied, where Random forest is found to be the most accurate algorithm providing the least MAPE. We also find that, among these many algorithms, XGBoost, CatBoost have good potential to be further investigated – as their computational times are relatively low, but with comparatively high efficiency.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2022.893
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject.classification Computer Science
dc.title การคาดการณ์เวลาเดินทางบนท้องถนนระหว่างพิกัดสองจุดในกรุงเทพมหานคร ด้วยวิธีการเรียนรู้ของเครื่อง
dc.title.alternative Road travel time prediction between two coordinates in Bangkok using machine learning approaches
dc.type Thesis
dc.degree.name วิศวกรรมศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิศวกรรมอุตสาหการ
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2022.893


Files in this item

This item appears in the following Collection(s)

Show simple item record