Abstract:
สถานการณ์โรคระบาดโควิด-19 ได้แพร่กระจายไปทั่วโลกตั้งแต่ปีพ.ศ.2562 การศึกษานี้ได้ทำการพยากรณ์ผู้ป่วยจากโรคโควิด-19ของประเทศไทย โดยใช้ข้อมูลตั้งแต่ วันที่ 22 มกราคม พ.ศ.2563 จนถึงวันที่ 31 ธันวาคม พ.ศ.2564 ซึ่งมีจำนวนข้อมูลอยู่ 710 วัน โดยข้อมูลสาธารณะจากมหาวิทยาลัยจอนส์ ฮอปคินส์ ผู้วิจัยได้ใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) ในการพยากรณ์จำนวนผู้ป่วยในประเทศเพื่อเป็นหนึ่งในข้อมูลในการช่วยรัฐบาลออกนโยบายการจัดการทรัพยากรเพื่อรับมือกับโรคระบาด การศึกษานี้ได้ใช้วิธีการจัดกลุ่มเคมีน (K-Means) ในการจัดกลุ่มของประเทศที่มีรูปแบบของจำนวนผู้ป่วยจากโรคคล้ายกันกับประเทศไทย ผลจากการจัดกลุ่มมีประเทศที่อยู่ใน Cluster เดียวกันกับประเทศไทยทั้งหมด 8 ประเทศ ได้แก่ ญี่ปุ่น (Japan), มาเลเซีย (Malaysia), ฟิลิปปินส์ (Philippines) ,บังกลาเทศ (Bangladesh) ,คิวบา (Cuba) ,อิรัก (Iraq) ,เม็กซิโก (Mexico) และ เวียดนาม (Vietnam) อยู่ในกลุ่มเดียวกับประเทศไทย จากนั้นทำการจับคู่ระหว่างประเทศไทยและประเทศที่อยู่ในกลุ่มเดียวกัน ใช้โมเดลหน่วยความจำระยะสั้นยาว (Long Short-Term Memory) เพื่อพยากรณ์จำนวนผู้ป่วยโควิด-19 ของประเทศไทย ผลจากโมเดลแสดงได้ว่าการใช้ข้อมูลคู่ประเทศไทยและบังกลาเทศ ญี่ปุ่น และเม็กซิโกมีค่าเฉลี่ยของร้อยละความผิดพลาดสัมบูรณ์ (Mean Absolute Percentage Error) น้อยที่สุดตามลำดับ เมื่อเทียบกับการใช้ข้อมูลแค่ประเทศไทยอย่างเดียว