dc.contributor.advisor |
เนื่องวงศ์ ทวยเจริญ |
|
dc.contributor.author |
จินตรัย พุทธิพรชัย |
|
dc.contributor.other |
จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์ |
|
dc.date.accessioned |
2023-02-03T04:00:43Z |
|
dc.date.available |
2023-02-03T04:00:43Z |
|
dc.date.issued |
2565 |
|
dc.identifier.uri |
http://cuir.car.chula.ac.th/handle/123456789/81546 |
|
dc.description |
วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2565 |
|
dc.description.abstract |
บทความวิจัยของไทยที่มีจำนวนเพิ่มมากขึ้นทำให้การจัดหมวดหมู่เป็นหมวดหมู่ย่อยเป็นเรื่องที่ท้าทาย ซึ่งต้องใช้ผู้เชี่ยวชาญและต้องใช้เวลามากในการจัดประเภทบทความประเภทต่าง ๆ ดังนั้นงานวิจัยนี้จึงนำเสนอวิธีการและเทคนิคในการจำแนกบทความวิทยาการคอมพิวเตอร์แบบหลายฉลากในวารสารไทยและนำเสนอการเปรียบเทียบวิธีการต่าง ๆ สำหรับการจำแนกประเภทหลายฉลาก คือ Binary Relevance (BR), Classifier Chains (CC) และ Label Power-set (LP) ด้วยวิธีการตัดคำที่ใช้ตัวแยกประเภทซัพพอร์ตเวกเตอร์แมชชีน พบว่าวิธีการ CC-SVM-RBF kernel ร่วมกับวิธีการตัดคำภาษาไทย pythainlp และ TF-IDF ให้ผลลัพธ์ที่ดีที่สุดสำหรับ ตัวชี้วัดประสิทธิภาพการเลือกตอบตามตัวอย่าง และ ตัวชี้วัดประสิทธิภาพการจำแนกประเภทหลายฉลาก โดยมี ML-accuracy = 0.578, Subset accuracy = 0.300, ค่าเรียกคืน = 0.670 และ ค่าเฉลี่ยไมโครสำหรับค่าเรียกคืน = 0.670 อย่างไรก็ตามวิธีการ BR-SVM-RBF kernel ร่วมกับวิธีการตัดคำภาษาไทย pythainlp ให้ผลลัพธ์ที่ดีที่สุดสำหรับ ตัวชี้วัดประสิทธิภาพการเลือกตอบตามตัวอย่าง และ ตัวชี้วัดประสิทธิภาพการจำแนกประเภทหลายฉลาก คือ Hamming loss = 0.106,
ค่าแม่นยำ = 0.735, ตัววัด F1 = 0.665, ค่าเฉลี่ยไมโครสำหรับค่าแม่นยำ = 0.586 และ ค่าเฉลี่ยไมโครสำหรับตัววัด F1 = 0.715 งานในอนาคตควรปรับปรุง Subset accuracy สำหรับแบบจำลองการจำแนกประเภทหลายฉลากในภาษาไทย |
|
dc.description.abstractalternative |
The increasing number of Thai research articles makes it challenging to classify them into sub-categories. This task requires specialists and a lot of time to classify the different types of articles. Therefore, this research presents methods and techniques for multi-label classification of computer science articles in Thai journals. We present a comparison of different methods for multi-label classification, including Binary Relevance (BR), Classifier Chains (CC), and Label Power-set (LP) with a word segmentation method that uses a Support Vector Machine (SVM) classifier. We found that the CC-SVM-RBF kernel method combined with pythainlp word segmentation and TF-IDF produces the best results for both example-based and label-based metrics, with ML-accuracy is 0.578, Subset accuracy is 0.300, Recall is 0.670 and Micro-average recall is 0.670 On the other hand, BR-SVM-RBF combined with pythainlp word segmentation and TF-IDF produces the best results for both example-based and label-based metrics with Hamming loss is 0.106, Precision is 0.735, F-measure is 0.655, Micro-average precision is 0.586 and Micro-average F-Measure is 0.715. In Future work, Subset accuracy should be improved for the multi-label classification model in the Thai language. |
|
dc.language.iso |
th |
|
dc.publisher |
จุฬาลงกรณ์มหาวิทยาลัย |
|
dc.relation.uri |
http://doi.org/10.58837/CHULA.THE.2022.771 |
|
dc.rights |
จุฬาลงกรณ์มหาวิทยาลัย |
|
dc.subject.classification |
Computer Science |
|
dc.subject.classification |
Computer Science |
|
dc.title |
การจำแนกประเภทแบบหลายฉลากของบทความในฐานข้อมูลวารสารวิชาการไทยจากบทคัดย่อ |
|
dc.title.alternative |
Multi-label classification for articles in Thai journal database from article's abstract |
|
dc.type |
Thesis |
|
dc.degree.name |
วิทยาศาสตรมหาบัณฑิต |
|
dc.degree.level |
ปริญญาโท |
|
dc.degree.discipline |
วิทยาศาสตร์คอมพิวเตอร์ |
|
dc.degree.grantor |
จุฬาลงกรณ์มหาวิทยาลัย |
|
dc.identifier.DOI |
10.58837/CHULA.THE.2022.771 |
|