DSpace Repository

Mass ratio variance majority cleansing and minority oversampling technique for class imbalanced

Show simple item record

dc.contributor.advisor Krung Sinapiromsaran
dc.contributor.author Piboon Polvimoltham
dc.contributor.other Chulalongkorn University. Faculty of Sciences
dc.date.accessioned 2023-02-03T04:13:04Z
dc.date.available 2023-02-03T04:13:04Z
dc.date.issued 2022
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/81642
dc.description Thesis (M.Sc.)--Chulalongkorn University, 2022
dc.description.abstract A sampling method is one of the basic methods to deal with an imbalance problem appearing in machine learning. A dataset having an imbalance problem has a noticeably skewed distribution among different classes. There are three types of sampling techniques to solve this problem by balancing class distributions, undersampling technique, over-sampling technique, and combined sampling technique. In this research, the mass ratio variance scores of each data point of the same class are computed and used to remove noise from a majority class and synthesise instances from a minority class. The results of this proposed sampling technique improve recall over standard classifiers: a decision tree, a random forest, Linear SVM, and MLP on all synthesised datasets. Performances are reported on synthesised datasets and UCI datasets via three measures: Precision, Recall, and F1-score. Moreover, Wilcoxon signed-rank tests are used to confirm the improved performance.
dc.description.abstractalternative ขั้นตอนวิธีการสุ่มตัวอย่างเป็นหนึ่งในขั้นตอนวิธีพื้นฐานในการจัดการกับปัญหาคลาสไม่ได้ดุลซึ่งปรากฏในเซตข้อมูลการเรียนรู้ของเครื่อง ชุดข้อมูลที่มีปัญหาความไม่สมดุลจะมีการ กระจายของข้อมูลเบ้ไปยังกลุ่มใดกลุ่มหนึ่ง เทคนิคการสุ่มตัวอย่างมี 3 ประเภทซึ่งสามารถใช้ในการแก้ปัญหาคลาสไม่สมดุลได้โดยการปรับดุลของการกระจายตัวของคลาส ได้แก่ เทคนิคการสุ่มลดตัวอย่าง เทคนิคการสุ่มตัวอย่างเพิ่ม และเทคนิควิธีผสมรวมกันของทั้งเทคนิคการสุ่มลดตัวอย่างและเทคนิคการสุ่มตัวอย่างเพิ่ม ในวิทยานิพนธ์นี้คะแนนความแปรปรวนของอัตราส่วนมวลของแต่ละตัวอย่างจะถูกคำนวนแยกคลาส จากนั้นจะถูกใช้กำจัดข้อมูลรบกวนออกจากคลาสส่วนมากและทำการสังเคราะห์ตัวอย่างเพิ่มในคลาสส่วนน้อย ผลลัพธ์ของขั้นตอนวิธีสุ่มที่ถูกเสนอ ปรับปรุงค่ารีคอลให้ดีขึ้นโดยใช้ตัวจำแนกประเภทมาตรฐาน ต้นไม้ตัดสินใจ ป่าสุ่ม ซัพพอร์ตเวกเตอร์แมทชีนแบบเชิงเส้นและ เพอร์เซ็ปตรอนหลายชั้นเหล่านี้ทดสอบกับชุดข้อมูลสังเคราะห์ การรายงานประสิทธิภาพบนชุดข้อมูลสังเคราะห์และชุดข้อมูล UCI ผ่านตัววัดประสิทธิภาพ 3 ตัวคือค่าความแม่นยำ ค่ารีคอลและ ค่าคะแนน F1 ที่ดีขึ้น การทดสอบ Wilcoxon ถูกใช้เพื่อยืนยันประสิทธิภาพที่ถูกปรับปรุงแล้ว
dc.language.iso en
dc.publisher Chulalongkorn University
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2022.8
dc.rights Chulalongkorn University
dc.subject.classification Computer Science
dc.title Mass ratio variance majority cleansing and minority oversampling technique for class imbalanced
dc.title.alternative กระบวนการทำความสะอาดตัวอย่างคลาสที่มีจำนวนมากและเพิ่มตัวอย่างคลาสที่มีจำนวนน้อยโดยใช้ความแปรปรวนของอัตราส่วนมวล
dc.type Thesis
dc.degree.name Master of Science
dc.degree.level Master's Degree
dc.degree.discipline Applied Mathematics and Computational Science
dc.degree.grantor Chulalongkorn University
dc.identifier.DOI 10.58837/CHULA.THE.2022.8


Files in this item

This item appears in the following Collection(s)

Show simple item record