Abstract:
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาปัจจัยที่มีความสัมพันธ์กับความยากจนในระดับครัวเรือนและเสนอวิธีการเปรียบเทียบและปรับปรุงความสามารถในการพยากรณ์แบบไบนารี่โดยใช้การเรียนรู้เมตาแบบถ่วงน้ำหนักแบบปรับจากการคำนวนค่าถ่วงน้ำหนักวิธีที่ดีที่สุดสำหรับการจำแนกความยากจนระดับครัวเรือนในประเทศไทย โดยนำเสนอวิธีการสองขั้นตอน คือนำตัววัดประสิทธิภาพการทำนายมาใช้ในการคำนวณค่าถ่วงน้ำหนักแบบปรับ ซึ่งนำมาใช้เสมือนเป็นค่าถ่วงน้ำหนักเริ่มต้นที่ให้กับแต่ละตัวแบบ จากนั้นจึงทำนายผลด้วยวิธีการวิเคราะห์การถดถอยลอจิสติกอีกขั้นตอนหนึ่ง งานวิจัยนี้ศึกษาการคำนวณค่าถ่วงน้ำหนักแบบปรับจากตัววัดประสิทธิภาพการทำนายใน 3 กรณี ได้แก่ 1. การใช้ค่า AUC 2. การใช้ค่า F1-Score โดยพิจารณาจุดตัด 0.5 และ 3. การใช้ค่า F1-Score โดยพิจารณาค่าจุดตัดที่เหมาะสมที่สุดจากดัชนีโยเดนที่สูงสุด นอกจากนี้ เนื่องจากชุดข้อมูลสำรวจประชากรรายครัวเรือนในระดับพื้นที่มีความไม่สมดุลของระดับความยากจน จึงใช้เทคนิค SMOTE ในการจัดการกับข้อมูลที่ไม่สมดุล ทั้งนี้ ผู้วิจัยได้ทำการเปรียบเทียบผลลัพธ์จากชุดข้อมูลก่อนและหลังใช้เทคนิค SMOTE ผลการศึกษาพบว่า ปัจจัยที่มีความสัมพันธ์กับความยากจนในระดับครัวเรือนสูงมีหลายปัจจัย อาทิ อายุของหัวหน้าครัวเรือน จำนวนผู้ที่ได้รับบัตรสวัสดิการแห่งรัฐในครัวเรือน,ค่าใช้จ่ายเพื่อการบริโภคในครัวเรือน เป็นต้น และวิธีการคำนวณค่าถ่วงน้ำหนักแบบปรับจากตัววัดประสิทธิภาพ F1-Score ที่จุดตัด 0.5 มีประสิทธิภาพสูงสุดจากการพิจารณาด้วยค่าความแม่นยำในชุดข้อมูลตั้งต้นก่อนใช้เทคนิค SMOTE อย่างไรก็ตาม จากการทดสอบในชุดข้อมูลที่มีการจัดการกับข้อมูลที่ไม่สมดุลด้วยวิธี SMOTE พบว่า ประสิทธิภาพในการทำนายไม่ปรากฏว่าวิธีการคำนวณค่าถ่วงน้ำหนักแบบปรับจากตัววัดประสิทธิภาพแบบใดแบบหนึ่งที่มีประสิทธิภาพสูงสุดอย่างชัดเจน