Abstract:
Objective: Indirect Jagged1 immobilization efficiently activates canonical Notch signaling in hDPSCs. This study aimed to investigate the characteristic of the Jagged1-treated hDPSCs-derived dECM and its biological activity on odonto/osteogenic differentiation SCAPs. Methods: Bioinformatic database of Jagged1-treated hDPSCs was analyzed by NetworkAnalyst. hDPSCs seeded on Jagged1 immobilized surface were maintained with N or OM followed by decellularization procedure, dECM-N or dECM-OM, respectively. SCAPs were reseeded on each dECM with either normal medium or OM. Cell viability was determined by MTT assay. Characteristics of dECMs and SCAPs were evaluated by SEM, EDX, immunofluorescent staining and alcian blue staining. A Multipotential differentiation assay. Statistical significance was considered at p<0.05. Results: RNA-seq database revealed upregulation of several genes involved in ECM organization, ECM-receptor interaction, and focal adhesion in Jagged1-treated hDPSCs. Immobilized Jagged1 increased the osteogenesis of hDPSCs culture with OM. dECMs showed fibrillar-like network structure and major ECM proteins, as well as glycosaminoglycans. A decrease in calcium and phosphate components was observed in dECMs after the decellularized process. Cell viability on dECMs did not alter by 7 days. Cell attachment and f-actin cytoskeletal organization of SCAPs proliferated on Jagged1-treated dECMs were comparable to those of the control dECMs. SCAPs exhibited significantly higher mineralization on dECM-N in OM and markedly enhanced on dECM-OM with normal medium or OM conditions. Jagged1-treated hDPSCs-derived dECMs have biocompatible and increase odonto/osteogenic differentiation of SCAPs. The results suggested the potential of Jagged1 dECMs, which could be further developed into ECM scaffolds for application in regenerative medicine.