Abstract:
งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาและเปรียบเทียบวิธีการประมาณสูญหายในตัวแบบการถดถอยเชิงเส้นพหุคูณ ที่ตัวแปรอิสระมีการสูญหายแบบนอนอิกนอร์เรเบิลที่มีความสัมพันธ์กัน ในการศึกษานี้มีวิธีการที่ถูกพัฒนาขึ้นคือ Expected Regression Imputation (ERI) และ Conditional Expected Regression Imputation (CERI) โดยจะเปรียบเทียบประสิทธิภาพวิธีการที่พัฒนาขึ้นมากับอีก 3 วิธีการ ได้แก่ วิธี K-Nearest Neighbor Imputation (KNN), วิธี Expectation Maximization Algorithm (EM) และ วิธี Predictive Mean Matching Imputation (PMM) ) การศึกษานี้ได้ควบคุมปัจจัยความแปรปรวนของตัวแปรอิสระ, ความสัมพันธ์ของตัวแปรอิสระ, ส่วนเบี่ยงเบนมาตรฐานค่าความคลาดเคลื่อน, ร้อยละการสูญหายและระดับ Nonignorability โดยวิธีการที่ให้ค่าเฉลี่ยของค่าเฉลี่ยความคลาดเคลื่อนกำลังสอง (Average mean square error) น้อยที่สุดจะเป็นวิธีการที่มีประสิทธิภาพสูงที่สุด ผลการวิจัยพบว่า เมื่อข้อมูลมีการกระจายตัวสูงและกลางวิธี KNN มีประสิทธิภาพสูงสุดในทุกกรณีที่ศึกษา แต่ถ้าข้อมูลกระจายตัวต่ำ วิธี KNN จะดีเมื่อกรณีตัวแปรมีความสัมพันธ์กันสูงและร้อยละการสูญหายต่ำ วิธี EM จะประสิทธิภาพสูงเมื่อร้อยละการสูญหายสูงในทุกระดับความสัมพันธ์ วิธี ERI จะประสิทธิภาพสูงเมื่อตัวแปรมีความสัมพันธ์เชิงบวกในระดับกลางลงไปในเกือบทุกกรณีที่ศึกษา วิธี CERI จะประสิทธิภาพสูงเมื่อตัวแปรมีความสัมพันธ์เชิงลบในระดับกลางลงไปและร้อยละการสูญหายต่ำ