DSpace Repository

A Comparative Study on Out of Scope Detection for Chest X-ray Images

Show simple item record

dc.contributor.advisor Ekapol Chuangsuwanich
dc.contributor.advisor Proadpran Punyabukkana
dc.contributor.author Nuttapol Kamolkunasiri
dc.contributor.other Chulalongkorn University. Faculty of Engineering
dc.date.accessioned 2023-08-04T07:35:59Z
dc.date.available 2023-08-04T07:35:59Z
dc.date.issued 2022
dc.identifier.uri https://cuir.car.chula.ac.th/handle/123456789/83075
dc.description Thesis (M.Eng.)--Chulalongkorn University, 2022
dc.description.abstract Image classification models in actual applications may receive input outside the intended data distribution. For crucial applications such as clinical decision-making, it is critical that a model can recognize and describe such out-of-distribution (OOD) inputs. The objective of this study is to investigate the efficacy of several approaches for OOD identification in medical images. We examine three classes of OOD detection methods (Classification models, Confidence-based models, and Generative models) on the data of X-ray images. We found that simple classification methods and HealthyGAN perform the best overall. However, HealthyGAN cannot generalize to unseen scenarios, while classification models still retain some performance advantage. We also investigate the type of images that might be harder to detect as out of scope. We found that image crop-outs, while being easily identifiable by humans, are more challenging for the models to detect.
dc.description.abstractalternative แบบจำลองการจําแนกภาพในแอปพลิเคชันที่ใช้งานจริงนั้น อาจได้รับชุดข้อมูลที่อยู่นอกการกระจายของข้อมูลที่ต้องการ สําหรับการใช้งานที่สําคัญเช่นการตัดสินใจทางการแพทย์เป็นสิ่งจำเป็นอย่างยิ่งที่แบบจําลองสามารถรับรู้และรองรับข้อมูลที่อยู่นอกการกระจาย (out-of-distribution) ดังกล่าวได้ วัตถุประสงค์ของการศึกษานี้คือเพื่อตรวจสอบประสิทธิภาพของวิธีการต่างๆสําหรับการระบุข้อมูลที่อยู่นอกการกระจายในภาพทางการแพทย์ เราตรวจสอบวิธีการตรวจจับข้อมูลที่อยู่นอกการกระจายทั้งหมดสามประเภท (แบบจําลองClassification , แบบจําลองConfidence-based และแบบจําลองGenerative) เกี่ยวกับข้อมูลของภาพเอ็กซ์เรย์ เราพบว่าแบบจําลองClassificationและ HealthyGAN ทํางานได้ดีที่สุด อย่างไรก็ตาม HealthyGAN ไม่สามารถระบุข้อมูลที่ไม่เคยเรียนรู้มาก่อนได้ในขณะที่แบบจําลองClassificationยังคงรักษาความได้เปรียบด้านประสิทธิภาพไว้ได้ นอกจากนี้เรายังตรวจสอบประเภทของภาพที่อาจตรวจจับได้ยากกว่าว่าอยู่นอกการกระจาย เราพบว่าการครอบตัดภาพ(crop-outs)นั้นมนุษย์สามารถระบุได้ง่ายแต่กับเป็นเรื่องที่ยากสำหรับแบบจำลองในการตรวจจับ
dc.language.iso en
dc.publisher Chulalongkorn University
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2022.100
dc.rights Chulalongkorn University
dc.title A Comparative Study on Out of Scope Detection for Chest X-ray Images
dc.title.alternative การศึกษาเปรียบเทียบการตรวจจับนอกสโคปสําหรับภาพเอกซเรย์ทรวงอก
dc.type Thesis
dc.degree.name Master of Science
dc.degree.level Master's Degree
dc.degree.discipline Computer Science
dc.degree.grantor Chulalongkorn University
dc.identifier.DOI 10.58837/CHULA.THE.2022.100


Files in this item

This item appears in the following Collection(s)

Show simple item record