Abstract:
คุณภาพของการเชื่อมต่อแบบสลักเกลียวมีความสําคัญต่อความปลอดภัยและความมั่นใจในการใช้งานโครงสร้างเหล็กแบบสำเร็จรูป งานวิจัยนี้พัฒนาการตรวจหาความหลวมของรอยต่อสลักเกลียวแบบอัตโนมัติโดยใช้เทคนิค Faster R- CNN (faster region-based convolutional neural networks) ร่วมกับเทคนิคเพิ่มความหลากหลายให้กับข้อมูลแบบ Grid Mask ซึ่ง Faster R-CNN มีความสามารถในการตรวจหาวัตถุ และระบุชนิดของวัตถุอย่างแม่นยํา โดยมีการพิจารณาใช้โมเดล backbone ประเภท ResNeXt-101 จะให้ผลลัพธ์ดีที่สุดเนื่องจาก ResNeXt-101 มีการเพิ่มประสิทธิภาพของแบบจำลองโดยการเพิ่มพารามิเตอร์แบบคาร์ดินาลิตี้ เราได้นําความสามารถนี้ไปใช้ในการแยกประเภทระดับของการขันแบบแน่น หลวม และไม่สามารถระบุได้ โดยใช้การวิเคราะห์ท้ังด้วยการแบ่งความหลวมจากการขันสลักเกลียวที่บ่งชี้โดยช่างผู้เชี่ยวชาญ (ชุดข้อมูลที่ 1) และการแบ่งความหลวมโดยใช้มาตรฐานตามขนาดของแรงบิดสำหรับสลักเกลียวแต่ละประเภท (ชุดข้อมูลที่ 2) โดยในงานวิจัยนี้ได้ศึกษาสลักเกลียวสำหรับการแบ่งความหลวมโดยใช้มาตรฐานตามขนาดของแรงบิดแบบ M16 และ M22 โดยเฉพาะอย่างยิ่ง M16 ถูกใช้เป็นหลักในโครงสร้างเหล็กสำเร็จรูป ประกอบกับการเพิ่มความหลากหลายให้กับข้อมูลแบบ Grid Mask และการพลิกภาพทำให้ผลลัพธ์ค่า mAP และความแม่นยำในการตรวจจับความหลวมของสลักเกลียวในกรณีเฉพาะรอยต่อแบบแน่นและหลวม ในชุดข้อมูลแรกเป็น 65.51% และ 95.40% ตามลำดับ ในชุดข้อมูลที่สองสำหรับสลักเกลียวแบบ M16 เป็น 77.50% และ 91.30% ตามลำดับ และสลักเกลียวแบบ M22 เป็น 57.50% และ 84.29% การวิเคราะห์ความสามารถในการตรวจจับที่มุมระดับสายตาต่าง ๆ พบว่าถ้ามีการทำมุมระหว่างกล้องและรอยต่อที่ 0 – 15 องศาจะได้ผลลัพธ์ความแม่นยำสูงที่สุดเมื่อเทียบกับมุมระหว่างกล้องและรอยต่อที่มากขึ้น โดยจากผลการวิเคราะห์ภาพโดยใช้เทคนิค Grad-CAM พบว่าโมเดลจะพิจารณาความหลวมจากสายตาเช่นเดียวกับมนุษย์ ในชุดข้อมูลแรกและจากความยาวตั้งแต่ปลายเกลียวถึงน็อตในชุดข้อมูลที่ 2