Abstract:
Composite films of bacterial cellulose-silver nanoparticles (BC-Ag) were prepared by different methods of in-situ reduction of silver, using sodium hydroxide, ascorbic acid, chitosan, and UV irradiation. The effects of the reduction methods on their properties were investigated. The chitosan-reduced composite exhibited dispersed silver nanoparticles (AgNPs) within the nanocellulose matrix with the smallest size, while the ascorbic-reduced composite displayed the largest size. The incorporation of AgNPs tended to reduce the crystallinity of the composites, except for the ascorbic-reduced composite which exhibited an increase in crystallinity. Mechanical testing revealed that the ascorbic-reduced composite had the highest Young's modulus of 8960 MPa, whereas the UV-reduced composite had the highest tensile strength and elongation at break. Thermal analysis of BC-Ag composites indicated similar glass transition temperature and decomposition profiles to BC, with additional weight loss steps at high temperatures. The sodium hydroxide-reduced composite demonstrated the highest electrical conductivity of 1.1×10-7 S/cm. Water absorption capacity was reduced by the incorporation of AgNPs, except for the chitosan-reduced composite, which showed an enhanced water absorption capacity of 344%. All BC-Ag composites displayed very strong antibacterial activities against Escherichia coli and Staphylococcus aureus. These results also highlight the potential uses of BC-Ag composites in various applications, including wound healing and biosensors.