DSpace Repository

การแบ่งส่วนตับและเนื้องอกในภาพสเปคซีทีของเทคนีเซียม-99เอ็ม เอ็มเอเอ สำหรับการวางแผนการรักษาด้วยการนำสารกัมมันตรังสีเข้าสู่ร่างกายเฉพาะจุดด้วยโครงข่ายประสาทเชิงลึก

Show simple item record

dc.contributor.advisor พรรณราย ศิริเจริญ
dc.contributor.advisor กิติวัฒน์ คำวัน
dc.contributor.author สุกัญญา แซ่คู
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2023-08-04T07:36:35Z
dc.date.available 2023-08-04T07:36:35Z
dc.date.issued 2565
dc.identifier.uri https://cuir.car.chula.ac.th/handle/123456789/83109
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2565
dc.description.abstract การบำบัดด้วยรังสีเฉพาะจุดเป็นวิธีการสลายลิ่มเลือดด้วยรังสีที่ใช้ในการรักษาเนื้องอกร้ายในตับ อัตราส่วนเนื้องอกต่อเนื้อตับเป็นพารามิเตอร์ที่สำคัญสำหรับการวางแผนการรักษาด้วยการนำสารกัมมันตรังสีเข้าสู่ร่างกายเฉพาะจุดด้วยอนุภาคเรซินไมโครสเฟียร์เคลือบสารกัมมันตรังสีอิตเทรียม-90 (90Y) เพื่อใช้ประเมินปริมาณสารกัมมันตรังสีอิตเทรียม-90 จากปริมาตรของเนื้อตับและเนื้องอกตับของคนไข้ด้วยสารเภสัชรังสีการปล่อยโฟตอนเดี่ยวเทคนีเซียม-99เอ็ม เอ็มเอเอ ในการศึกษานี้เสนอ Multi-Scale Attention U-Net (MA-Net) ที่รวมคุณสมบัติที่หลากหลายของรูปภาพที่มีการตัดเฉพาะส่วนช่องท้อง และใช้ฮิสโตแกรมจัดการรูปภาพสเปค-ซีที ที่มีการกระจายค่าแสงแบบปกติและผิดปกติ โดยใช้โมเดลที่ผ่านการฝึกอบรมล่วงหน้า Noisy student และการเพิ่มความหลากหลายของภาพ งานวิจัยนี้นำเสนอโมเดลที่แยกระหว่างการแบ่งส่วนเนื้อตับจากภาพซีทีและการแบ่งส่วนเนื้องอกตับจากภาพสเปค-ซีที และโมเดลรวมการแบ่งส่วนเนื้อตับและเนื้องอกตับจากการฟิวชั่นภาพซีทีและภาพสเปค-ซีที ในงานวิจัยนี้ใช้ชุดข้อมูลสาธารณะ 3DIRCADb-01 ร่วมกับชุดข้อมูลภาพเทคนีเซียม-99เอ็ม เอ็มเอเอ ซีที สำหรับการแบ่งส่วนเนื้อตับและชุดข้อมูลภาพเทคนีเซียม-99เอ็ม เอ็มเอเอ สเปค-ซีที สำหรับเนื้องอกตับที่รวบรวมจากหน่วยเวชศาสตร์นิวเคลียร์โรงพยาบาลจุฬาลงกรณ์สภากาชาดไทย วิธีการที่นำเสนอโมเดลแยกการแบ่งเนื้อตับและเนื้องอกตับมีค่า Dice Similarity Coefficient (DSC) เท่ากับ 0.90, 0.66 และ Intersection over Union (IoU) เท่ากับ 0.84 และ 0.55 ตามลำดับ ซึ่งมีประสิทธิภาพการแบ่งส่วนที่แม่นยำกว่าโมเดลการเรียนรู้เดียวกันโดยใช้รูปภาพฟิวชั่นภาพ ซีที และสเปค-ซีที การแบ่งส่วนเนื้อตับและเนื้องอกตับ มีค่า DSC เท่ากับ 0.83, 0.62 และ IoU เท่ากับ 0.74 และ 0.51 ตามลำดับ การแบ่งส่วนที่แม่นยำจะทำให้การบำบัดด้วยรังสีเฉพาะจุดมีประสิทธิภาพที่ดี
dc.description.abstractalternative The Tumor-Liver ratio (TLR) is an important dosimetric parameter for Selective Internal Radiation Therapy (SIRT) treatment using 90Y-microspheres. TLR can be calculated by performing liver and tumor segmentation using Technetium-99m Macroaggregated Albumin (99mTc-MAA). We propose Multi-Scale Attention U-Net (MA-Net) to learn and fuse various semantic features from different scales of abdominal cropped images and histogram adjustment are used for handling normal and abnormal histogram distribution. Noisy student pre-trained weights which were learned from noisy image dataset using data augmentation are initially used in our work. In this work comparing identify model framework of the liver from CT images and another model of tumor from SPECT/CT images and a combined liver-tumor segmentation model from fused images. 3DIRCADb-01 public dataset is also included along with our MAA CT images collected from King Chulalongkorn Memorial Hospital for liver segmentation, and MAA SPECT/CT dataset is used for tumor segmentation. Our proposed method can accurately identify liver and tumor regions with Dice Similarity Coefficient (DSC) of 0.90 and 0.66, and Intersection over Union (IoU) of 0.84 and 0.55, respectively. The model of liver-tumor regions from fused images with DSC of 0.83, 0.62, and IoU of 0.74 and 0.51, respectively. Accurate segmentation leads to improved SIRT efficacy.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2022.784
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.title การแบ่งส่วนตับและเนื้องอกในภาพสเปคซีทีของเทคนีเซียม-99เอ็ม เอ็มเอเอ สำหรับการวางแผนการรักษาด้วยการนำสารกัมมันตรังสีเข้าสู่ร่างกายเฉพาะจุดด้วยโครงข่ายประสาทเชิงลึก
dc.title.alternative Liver and Tumor Segmentation in 99mTc-MAA SPECT/CT Images for Selective Internal Radiation Therapy Treatment Planning  using Deep Neural Networks
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิทยาศาสตร์คอมพิวเตอร์
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2022.784


Files in this item

This item appears in the following Collection(s)

Show simple item record