DSpace Repository

Effect of drop-out layers inside recurrent neural networks in household load forecast application

Show simple item record

dc.contributor.advisor Wanchalerm Pora
dc.contributor.author Sanaullah Soomro
dc.contributor.other Chulalongkorn University. Faculty of Engineering
dc.date.accessioned 2023-08-04T07:37:19Z
dc.date.available 2023-08-04T07:37:19Z
dc.date.issued 2022
dc.identifier.uri https://cuir.car.chula.ac.th/handle/123456789/83140
dc.description Thesis (M.Eng.)--Chulalongkorn University, 2022
dc.description.abstract Ensuring precise power load forecasting is highly important in planning the secure, steady, and cost-effective functioning of the power system. Grid planning and decision-making can be based on accurate long- and short-term power load forecasting. Recently, machine learning techniques have gained widespread adoption for both long- and short-term power load forecasting. Specifically, the Long Short-Term Memory (LSTM) is customized for time series data analysis. This research proposes an LSTM model for forecasting the power load of a single house containing electrical appliances over the next 20 days. We conducted a comparative analysis of the impact of dropout layers in load forecasting applications using the LSTM model. The proposed model comprises dropout rates of 0.2, 0.3, 0.4, 0.5, and 0.6, respectively. Their impact on load forecasting is examined. The experimental results demonstrate slight variations in predictions when altering dropout layers. The results show that the effect of dropout layers on the forecast varies the accuracy by only approximately 1%. However, the models with significant dropout rates are more general than those with lower or higher rates. So the model with a dropout rate of 0.4 is suggested.
dc.description.abstractalternative การคาดการณ์โหลดไฟฟ้าที่แม่นยำมีความสำคัญอย่างยิ่งในการวางแผนการผลิตไฟฟ้าที่มั่นคง ปลอดภัย และคุ้มค่า ข้อมูลการคาดการณ์โหลดไฟฟ้าระยะยาวและระยะส้ันยังสามารถใช้ในการวางแผนกริดและการพิจารณาอื่นๆ ได้อีกด้วย เมื่อเร็ว ๆ น้ี มีการประยุกต์ใช้เทคนิคการเรียนรู้ของเครื่องกันอย่างแพร่หลาย มีการนำไปใช้สำหรับการพยากรณ์โหลดไฟฟ้าทั้งระยะยาวและระยะส้ัน ยกตัวอย่างเช่น Long Short-Term Memory (LSTM) ได้รับการออกแบบเพื่อการวิเคราะห์ข้อมูลอนุกรมเวลาเช่น ข้อมูลโหลดไฟฟ้า โดยเฉพาะ งานวิจัยน้ีนำเสนอแบบจำลอง LSTM ที่มีการแทรกชั้นดรอปเอาต์เข้าไป สำหรับคาดการณ์โหลดไฟฟ้าของบ้านเดี่ยวในอีก 20 วันข้างหน้า แบบจำลองที่นำเสนอประกอบด้วยชั้นดรอปเอาต์ที่มีอัตราดรอปเอาต์ที่ 0.2 0.3 0.4 0.5 และ 0.6 ได้ทำการทดลองและวิเคราะห์ผลกระทบต่อการคาดการณ์โหลด ผลลัพธ์แสดงให้เห็นว่ามีการเปลี่ยนแปลงที่ดีขึ้นเล็กน้อยเมื่อทำเพิ่มชั้นดรอปเอาต์ โดยความแม่นยำเปลี่ยนแปลงในทางที่ดีขึ้นประมาณ 1% เท่าน้ัน อย่างไรก็ตามเนื่องจากยิ่งโมเดลที่มีอัตราดรอปเอาต์มากจะใช้ในกรณีทั่วไปได้ดีกว่า (ไม่ยึดติดกับชุดข้อมูลที่ใช้ในการเรียนรู้) ดังนั้นขอแนะนำให้ใช้อัตราดรอปเอาต์ที่ 0.4
dc.language.iso en
dc.publisher Chulalongkorn University
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2022.132
dc.rights Chulalongkorn University
dc.title Effect of drop-out layers inside recurrent neural networks in household load forecast application
dc.title.alternative ผลกระทบของชั้นดรอปเอาต์ภายในโครงข่ายประสาทเทียมแบบวนกลับที่ประยุกต์ใช้พยากรณ์โหลดบ้านเรือน
dc.type Thesis
dc.degree.name Master of Engineering
dc.degree.level Master's Degree
dc.degree.discipline Electrical Engineering
dc.degree.grantor Chulalongkorn University
dc.identifier.DOI 10.58837/CHULA.THE.2022.132


Files in this item

This item appears in the following Collection(s)

Show simple item record