Abstract:
This thesis investigates biodiesel production from palm oil by transesterification using extruded CaO catalysts. The preparation parameters of extruded CaO catalysts were investigated including 1) binder type including activated alumina, diatomite and kaolin, 2) calcination temperature at 700, 800 and 900°C, 3) mass ratio of CaO to the binder at 1: 1, 3: 1 and 6: 1. The Effect of catalyst shape of the extruded CaO and the addition of pore forming (polyacrylamide) on the catalytic activity of extruded CaO were also studied using transesterification using methanol to palm oil. The ratio of methanol to palm oil was fixed at 12 to 1, 10 wt% catalyst loading, the reaction temperature of 65 °C, for 6 h at a stirring speed 600 rpm. The extruded CaO catalyst with a short cylindrical shape with a dimension of 6 mm in diameter and 1.5 in long offered the high biodiesel yield as compared to spherical and long cylindrical shape based on the similar surface area. In addition, using polyacrylamide as a pore forming agent can increase the surface area and pore volume during calcination which can provide the higher biodiesel yield.